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a b s t r a c t

A generalized potential-based constitutive model for mixed-mode cohesive fracture is

presented in conjunction with physical parameters such as fracture energy, cohesive

strength and shape of cohesive interactions. It characterizes different fracture energies

in each fracture mode, and can be applied to various material failure behavior (e.g.

quasi-brittle). The unified potential leads to both intrinsic (with initial slope indicators

to control elastic behavior) and extrinsic cohesive zone models. Path dependence of

work-of-separation is investigated with respect to proportional and non-proportional

paths—this investigation demonstrates consistency of the cohesive constitutive model.

The potential-based model is verified by simulating a mixed-mode bending test. The

actual potential is named PPR (Park–Paulino–Roesler), after the first initials of the

authors’ last names.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A potential function is associated with physical field quantities as a function of position at the continuum or atomistic
level (e.g. gravity, strain energy, magnetic energy, electric energy). In a continuum setting, strain-energy functions allow
the determination of stresses and the stiffness distributions in a solid. For isotropic and incompressible materials, the
general strain-energy function can be deduced from the linear relationship between shear and traction (Mooney, 1940). At
the atomistic level, pair potentials are mostly utilized to represent the particle debonding process as a function of an atomic
distance (‘) such as the Lennard–Jones potential. The general shape of atomistic potentials (Girifalco and Weizer, 1959) is
shown in Fig. 1(a). A potential function must have a minimum at some point because the interaction force, i.e. the
derivative of the potential, must be attractive at large distances, and repulsive at smaller distances. The work to complete
dissociation (C0) of an interaction should be finite, which corresponds to the area under the interaction force curve
(Fig. 1(b)). When the distance between particles becomes critical (‘cr), the interaction reaches a bifurcation point. The
potential (C) has a convex shape (C0040) before the bifurcation, and a concave shape (C00o0) after the bifurcation point.

For the analysis of deformation and failure mechanisms, an atomistic potential is connected to a macroscopic
continuum potential through multi-scaling techniques. Tadmor et al. (1996) proposed the quasi-continuum method for the
analysis of coupled atomistic/continuum deformation process in crystals based on an atomistic energy function. Gao and
Klein (1998) developed the virtual internal bond model, which connects the interatomic bonding to the continuum
cohesive failure through the Cauchy–Born rule. The model combines elastic and fracture behavior within the framework of
continuum mechanics. The virtual internal bond model has been successfully utilized to describe crack nucleation and
growth for various materials (Klein and Gao, 1998; Gao and Ji, 2003; Thiagarajan et al., 2004; Park et al., 2008b). Moreover,
it has been modified by Volokh and Gao (2005) to account for two independent linear elastic constants.
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Nomenclature

The following symbols are used in this paper:

h�i Macaulay bracket
‘ atomic distance
‘cr atomic distance at the bifurcation (critical)

point
m, n non-dimensional exponents in the PPR model
P applied load
PI, PII loading parameters in mixed-mode bending

tests
r non-dimensional parameter in the potential by

Xu and Needleman (1993)
Tn, Tt normal and tangential cohesive interactions
Wsep work-of-separation
Wn, W t work done by the normal and tangential

cohesive traction

a, b shape parameters in the PPR model
Gn, Gt energy constants in the PPR model
D deflection in the mixed-mode bending tests
Dn, Dt normal and tangential separations along frac-

tured surface
Dn;max, Dt;max maximum normal and tangential separa-

tions
Dr separation for proportional path
dn, dt characteristic length scale parameters
d̄n, d̄t normal and tangential conjugate final crack

opening widths
y separation angle
l effective displacement
ln, lt initial slope indicators
smax, tmax normal and tangential cohesive strengths
fn, ft modes I and II fracture energies
C potential function for cohesive fracture
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Alternatively, based on the concept of cohesive zone (Barenblatt, 1959; Dugdale, 1960), Xu and Needleman (1994)
introduced the cohesive surface network to simulate crack growth and branching phenomena. Elastic deformation is
represented by general volumetric elements, while cohesive fracture behavior is described by interfacial cohesive surface
elements. The constitutive relationship of cohesive fracture is derived by a potential, which represents the fracture energy
distribution in conjunction with separation of fractured surfaces. Due to the physical nature of a potential, the first
derivative of the fracture energy potential (C) provides the traction (cohesive interactions) over fractured surfaces, and its
second derivative provides the constitutive relationship (material tangential modulus). A single potential function,
therefore, characterizes the physical fracture behavior. The cohesive zone model concept has also been applied to the
extended and generalized finite element methods (X-FEM and GFEM) (Wells and Sluys, 2001; Moes and Belytschko, 2002;
Remmers et al., 2008).

In the cohesive zone model, the fundamental issue for simulation of failure mechanisms is the characterization of
cohesive interactions between fractured surfaces. Cohesive interactions can be classified by either non-potential-based
models (e.g. Yang and Thouless, 2001; Zhang and Paulino, 2005; van den Bosch et al., 2006) or potential-based models
(e.g. Needleman, 1987; Beltz and Rice, 1991; Tvergaard and Hutchinson, 1993; Xu and Needleman, 1993). Non-potential-
based models are relatively simple to develop cohesive interactions because a symmetric system is not required. For
instance, Yang and Thouless (2001) utilized trapezoidal shaped traction–separation relationships to simulate mixed-mode
fracture of plastically deforming adhesive joints. Zhang and Paulino (2005) utilized traction-based bilinear cohesive
zone model for the analysis of homogeneous and functionally graded materials (FGMs) undergoing dynamic failure.
Shim et al. (2006) extended the traction-based model to the displacement-based bilinear cohesive zone model in order to
investigate J resistant behavior of TiB/Ti FGM in conjunction with the domain integral. In addition, van den Bosch et al.
(2006) proposed an alternative exponential cohesive relationship, and assessed the work-of-separation under mixed-mode
condition. The main limitation of a non-potential-based model is that one does not account for all possible separation or
0
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Ψ
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Fig. 1. (a) Shape of a general atomistic potential (C) and (b) its derivative (C0).
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Table 1
Potentials for cohesive fracture

Potential model Normal interaction Tangential interaction

Needleman (1987) Polynomial Linear

Needleman (1990) Exponential Periodic

Beltz and Rice (1991) Exponential Periodic

Xu and Needleman (1993) Exponential Exponential

Present (PPR model) Polynomial Polynomial
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loading paths of crack growth in a domain. Therefore, non-potential-based models may provide non-physical cohesive
interactions, e.g. positive stiffness in a softening region, under certain mixed-mode fracture conditions, although they can
capture physical fracture behavior for known crack path problems (e.g. mode I fracture or inter-layer delamination).
Moreover, the tangential stiffness leads to the unsymmetric condition, which increases computational cost when solving
the underlying linear system of governing equations.

For potential-based models, the one-dimensional traction potential proposed by Tvergaard and Hutchinson (1993),

C ¼ dn

Z l

0
sðl0Þdl0, (1)

is widely utilized to simulate interfacial fracture. The mode-mixity is considered by an effective displacement (l)
expressed as

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDn=dnÞ

2
þ ðDt=dtÞ

2
q

, (2)

where Dn and Dt are normal and tangential separations over the fractured surface, respectively, and dn and dt are
characteristic length scales which are related to the fracture energy and the cohesive strength. The function sðlÞ represents
a traction–separation relationship. Tvergaard and Hutchinson (1992) utilized a trapezoidal shape to describe plastic
behavior of ductile materials. On the other hand, Camacho and Ortiz (1996) introduced the initially rigid linear cohesive
relation for adaptive insertion of cohesive surface elements, i.e. the extrinsic cohesive zone model. Ortiz and Pandolfi
(1999) extended the linear cohesive relationship to the finite-deformation irreversible cohesive interaction in three
dimensions. Based on linear cohesive interactions, Zhou et al. (2005) investigated fragmentation process in conjunction
with strain rate and initial defects distribution, and Zhang et al. (2007) successfully simulated microbranching instability
experiments.

Although the one-dimensional potential models capture fracture behavior by changing the shape of the softening curve,
the models cannot have different fracture energies in modes I and II (Tvergaard and Hutchinson, 1993). However, most
materials have different fracture energies with respect to the loading mode (Anderson, 1995). Several researchers have
demonstrated the variation of the fracture energy from mode I fracture to mode II fracture through mixed-mode fracture
specimen (Banks-Sills and Bortman, 1986) and delamination testing (Reeder and Crews, 1990; Benzeggagh and Kenane,
1996). Due to the relatively high fracture energy in mode II, a structure may have higher loading capacity under certain
loading conditions. Carpinteri et al. (1989) demonstrated that mixed-mode fracture energy increased by about 30% over the
mode I fracture energy for concrete. A potential function which captures the different fracture energies, therefore, is
necessary for the simulation of the mixed-mode fracture.

There are several potential functions, which describe different fracture modes for cohesive fracture, as summarized in
Table 1 (including the proposed one). Needleman (1987) proposed a polynomial function-based potential to simulate void
nucleation by debonding. In order to account for large shear displacements, Needleman (1990) developed the
exponential–periodic potential. Later, the exponential–periodic potential was generalized by Beltz and Rice (1991). The
normal interaction is described by the exponential expression based on the atomistic potential by Rose et al. (1981), while
the tangential interaction employs a periodic function due to the periodic dependence of the underlying material lattice
(Rice, 1992). In order to consider shear failure relation, Xu and Needleman (1993) proposed the exponential potential for
both normal and tangential cohesive interactions. However, the above potentials have several limitations, especially, when
the mode I fracture energy is different from the mode II fracture energy (Paulino et al., 2007; Park et al., 2008a; Paulino
et al., 2008).

In this study, a unified potential-based constitutive model, called PPR (Park–Paulino–Roesler), for mixed-mode cohesive
fracture is developed. It characterizes different fracture energies, considers the different cohesive strengths, and describes
various material softening behaviors in order to represent a wide range of failure responses. This paper is organized as
follows. The unified potential-based model (PPR) for mixed-mode cohesive fracture is developed in Section 2. Section 3
discusses path dependence of the work-of-separation in the unified potential-based model for mixed-mode fracture.
Section 4 verifies the proposed model. Finally, Section 5 concludes the present work.
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2. PPR: unified potential-based constitutive model

In this section, the polynomial-based potential is proposed in conjunction with symmetric fracture boundary conditions
and macroscopic fracture parameters. The proposed potential is defined in the cohesive interaction (softening) region
where fractured surfaces transfer cohesive tractions. Both intrinsic and extrinsic cohesive zone constitutive models are
derived from the unified potential.

2.1. Definition of the unified potential for mixed-mode fracture

The unified PPR potential for cohesive fracture is proposed to describe physical macroscopic fracture, including explicit
control of elastic behavior for intrinsic models. Physical macroscopic behavior is represented by the following fracture
boundary conditions (Fig. 2):
�
 Complete normal failure occurs (Tn ¼ 0) when the normal or tangential separation reaches a certain length scale (dn, d̄t),
called the normal final crack opening width and the tangential conjugate final crack opening width, respectively,

Tnðdn;DtÞ ¼ 0; TnðDn; d̄tÞ ¼ 0. (3)
�
 Similarly, complete tangential failure occurs (Tt ¼ 0) either when the normal separation reaches the normal conjugate
final crack opening width (d̄n) or when the tangential separation reaches the tangential final crack opening width (dt),

Ttðd̄n;DtÞ ¼ 0; TtðDn; dtÞ ¼ 0. (4)
�
 The area under the cohesive interactions corresponds to the fracture energy. Therefore (fn, ft) are given by

fn ¼

Z dn

0
TnðDn;0ÞdDn; ft ¼

Z dt

0
Ttð0;DtÞdDt. (5)
�
 The normal and tangential tractions are maximum when the separations reach the critical opening displacements (dnc,
dtc),

qTn

qDn

����
Dn¼dnc

¼ 0;
qTt

qDt

����
Dt¼dtc

¼ 0. (6)
�
 The maximum tractions correspond to the cohesive strengths (smax, tmax),

Tnðdnc;0Þ ¼ smax; Ttð0; dtcÞ ¼ tmax. (7)
�
 The shape parameter indices (a, b) are introduced to characterize material softening responses, e.g. brittle, plateau and
quasi-brittle.
Tn (Δn,0)

σmax

Δn
�n�nc

� > 2

� ≈ 2 � ≈ 2
�n

Tt (0, Δt)

�max

−τmax

�t
�t

−�t

�tc
� > 2
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Fig. 2. Fracture boundary conditions for the unified mixed-mode potential.
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Based on these physical macroscopic fracture parameters, the potential for mixed-mode fracture, called the PPR
potential, is expressed as

CðDn;DtÞ ¼minðfn;ftÞ þ Gn 1�
Dn

dn

� �a m

a
þ
Dn

dn

� �m

þ hfn �fti

� �

� Gt 1�
Dtj j

dt

� �b n

b
þ

Dtj j

dt

� �n

þ hft �fni

" #
. (8)

The gradients of the PPR potential lead directly to the traction vector,

TnðDn;DtÞ ¼
Gn

dn
m 1�

Dn

dn

� �a m

a þ
Dn

dn

� �m�1

� a 1�
Dn

dn

� �a�1 m

a þ
Dn

dn

� �m
" #

� Gt 1�
Dtj j

dt

� �b n

b
þ

Dtj j

dt

� �n

þ hft �fni

" #
,

TtðDn;DtÞ ¼
Gt

dt
n 1�

Dtj j

dt

� �b n

b
þ

Dtj j

dt

� �n�1

� b 1�
Dtj j

dt

� �b�1 n

b
þ

Dtj j

dt

� �n
" #

� Gn 1�
Dn

dn

� �a m

a
þ
Dn

dn

� �m

þ hfn � fti

� �
Dt

Dtj j
, (9)

where h�i is the Macaulay bracket, i.e.

hxi ¼
0 ðxo0Þ;

x ðxX0Þ:

(
(10)

The normal and tangential tractions satisfy basic symmetry and anti-symmetry requirements (with respect to Dt), i.e.

TnðDn;DtÞ ¼ TnðDn;�DtÞ; TtðDn;DtÞ ¼ �TtðDn;�DtÞ, (11)

respectively. Notice that the value of TtðDn;DtÞ at Dt ¼ 0 exists in the limit sense, i.e.

lim
Dt!0þ

TtðDn;DtÞ ¼ 0; lim
Dt!0�

TtðDn;DtÞ ¼ 0. (12)

The eight characteristic parameters (Gn, Gt; m, n; dn, dt; a, b) in the potential function are determined by satisfying the
boundary conditions of macroscopic fracture. The energy constants, Gn and Gt, are related to modes I and II fracture energy,
which satisfy the boundary conditions of the fracture energies (5). When modes I and II fracture energy are different, one
obtains the energy constants

Gn ¼ ð�fnÞ
hfn�fti=ðfn�ftÞ

a
m

� 	m

; Gt ¼ ð�ftÞ
hft�fni=ðft�fnÞ

b
n

� �n

for ðfnaftÞ. (13)

If modes I and II fracture energy are the same, the energy constants are simplified as

Gn ¼ �fn

a
m

� 	m

; Gt ¼
b
n

� �n

for ðfn ¼ ftÞ. (14)

The non-dimensional exponents, m and n, are evaluated by the boundary conditions of the critical separations (6) and the
initial slope indicators (ln, lt),

m ¼
aða� 1Þl2

n

ð1� al2
nÞ
; n ¼

bðb� 1Þl2
t

ð1� bl2
t Þ

. (15)

The initial slope indicators are defined as the ratio of the critical crack opening width to the final crack opening width, i.e.

ln ¼ dnc=dn; lt ¼ dtc=dt. (16)

The initial slope indicators are introduced to control elastic behavior, which is eliminated in a constitutive model of
extrinsic cohesive surface elements. Smaller values of ln, lt (or dn, dt) result in the higher initial slope, and decrease
artificial elastic deformation. Therefore, ln and lt are generally selected to be ‘‘small’’ values within the range of numerical
stability for the intrinsic cohesive zone model.

The length scale parameters (dn and dt) are the final normal and tangential crack opening widths whose boundary
conditions (3, 4) are already satisfied by the potential function itself. The values of the final crack opening widths are
determined by considering the boundary conditions of fracture energy (5) and of the cohesive strength (7),

dn ¼
fn

smax
aln 1� lnð Þ

a�1 a
m
þ 1

� 	 a
m
ln þ 1

� 	m�1

,

dt ¼
ft

tmax
blt 1� ltð Þ

b�1 b
n
þ 1

� �
b
n
lt þ 1

� �n�1

. (17)
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Fig. 3. Unified mixed-mode potential (PPR) and its gradients for the intrinsic cohesive zone model with fn ¼ 100 N=m, ft ¼ 200 N=m, smax ¼ 40 MPa,

tmax ¼ 30 MPa, a ¼ 5, b ¼ 1:3, ln ¼ 0:1 and lt ¼ 0:2.
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The non-dimensional shape parameter indices (a, b) are introduced because the specific shape of the cohesive zone
model can significantly affect results of the fracture analysis (see, for example, Volokh, 2004; Alfano, 2006; Song et al.,
2008). If the shape parameter indices are equal to two, the order of the potential function is approximately two. Then, the
resulting gradient of the potential represents almost a linearly decreasing cohesive relationship. When the shape
parameters are less than two, the gradient of the potential demonstrates a concave softening shape, which can represent
a plateau-type function. If the shape parameter indices are chosen as larger values, the cohesive interaction has a
convex shape.

In summary, the potential function for mixed-mode cohesive fracture is developed by satisfying the boundary
conditions of macroscopic fracture. The unified potential and its gradients are plotted in Fig. 3. The plotted potential
represents different fracture energies (e.g. fn ¼ 100 N=m, ft ¼ 200 N=m), cohesive strengths (e.g. smax ¼ 40 MPa,
tmax ¼ 30 MPa), cohesive interactions (e.g. a ¼ 5, b ¼ 1:3) and initial slope indicators (e.g. ln ¼ 0:1, lt ¼ 0:2). The mode I
cohesive relationship illustrates fracture behavior of a typical quasi-brittle material, while the mode II cohesive
relationship describes a plateau-type behavior. The potential is also applicable when the mode I fracture energy is greater
than mode II fracture energy because the potential is explicitly derived by using the symmetric boundary conditions for
modes I and II.
2.2. Cohesive interaction (softening) region

The proposed potential is a continuous polynomial function. Exponential potentials result in an infinite final crack
opening width, while the polynomial-based potential provides a finite final crack opening width. Because of this fact, the
polynomial potential is only valid in the defined softening region. For example, mathematically the unbounded polynomial
potential provides non-zero traction even after a physical separation is greater than a final crack opening width. Therefore,
we must define a region for each cohesive interaction (Tn, Tt) in terms of a set of material-derived final crack opening
widths (e.g. dn, dt) and calculated conjugate final crack opening widths (e.g. d̄n, d̄t).

The cohesive interaction region is defined as a rectangular region for each cohesive interaction in conjunction with the
final crack opening widths (dn, dt) and the conjugate final crack opening widths (d̄n, d̄t) as shown in Fig. 4. For the normal
cohesive interaction (Tn), one border of the softening region is the normal final crack opening width (dn). If the normal
separation is greater than the normal final crack opening width (Dn4dn), the normal traction (Tn) is set to zero. The other
border of the softening region is the tangential conjugate final crack opening width (d̄t). If the tangential separation is
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�n ¯ �̄n

Δn Δn
ΔtΔt

Tn (Δn, Δt)

�t

Tt (Δn,Δt)

�t

Fig. 4. Description of each cohesive interaction (Tn, Tt) region defined by the final crack opening widths (dn, dt) and the conjugate final crack opening

widths (d̄n, d̄t): (a) Tn versus ðdn; d̄tÞ space and (b) Tt versus ðd̄n;dtÞ space.
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greater than the tangential conjugate final crack opening width (Dt4d̄t), the normal traction is also set to be zero. The value
of the tangential conjugate final crack opening width (d̄t) is obtained by satisfying the boundary condition of TnðDn; d̄tÞ ¼ 0.
Since Dn is an arbitrary separation, the tangential conjugate final crack opening width (Dt ¼ d̄t) is the solution of the
nonlinear function

f tðDtÞ ¼ Gt 1�
Dtj j

dt

� �b n

b
þ

Dtj j

dt

� �n

þ hft �fni ¼ 0. (18)

The uniqueness of the solution between 0 and dt is proved in the following way. When the mode II fracture energy (ft) is
greater than the mode I fracture energy (fn), f tð0Þ ¼ �fno0 and f tðdtÞ ¼ ft � fn40. Because f 0tðDtÞ is always positive
within the range of 0pDtpdt, the function f tðDtÞ has a single solution between 0 and dt. Additionally, when ft is not
greater than fn, the solution of a function f tðDtÞ is the same as the tangential final crack opening width, i.e. d̄t ¼ dt.

Accordingly, the cohesive interaction region for the tangential traction is defined by the tangential final crack opening
width (dt) and the normal conjugate final crack opening width (d̄n). The normal conjugate final crack opening width
(Dn ¼ d̄n) is the solution of the nonlinear function

f nðDnÞ ¼ Gn 1�
Dn

dn

� �a m

a
þ
Dn

dn

� �m

þ hfn �fti ¼ 0. (19)

The derivative of f nðDnÞ is positive within the rage of 0pDnpdn when fn is greater than ft. Then, because f nð0Þo0 and
f nðdnÞ40, the function f nðDnÞ has a single solution between 0 and dn. When fn is not greater than ft, the solution of a
function f nðDnÞ is the normal final crack opening width, i.e. d̄n ¼ dn.

In summary, the normal cohesive interaction (Tn) is defined within the normal final crack opening with (dn) and the
tangential conjugate final crack opening width (d̄t) space (Fig. 4(a)). The tangential cohesive interaction (Tt) is defined
within the tangential final crack opening width (dt) and the normal conjugate final crack opening with (d̄n) space
(Fig. 4(b)). The introduction of the conjugate final crack opening widths (d̄n, d̄t) guarantees that a non-zero traction will not
occur when load bearing capacity is lost.
2.3. Extension to the extrinsic cohesive zone model

The PPR potential function is extended for the case of the extrinsic cohesive zone models. In this case, cohesive surface
elements are adaptively inserted on the basis of an external crack initiation criterion. The potential function excludes the
elastic behavior (or initial slope) in the cohesive interactions. The limit of initial slope indicators in the PPR potential
function (ln ! 0 and lt ! 0) eliminates the initial slope indicators (ln, lt) and the exponents (m, n) from the resulting
expression. Thus one obtains the potential function for the extrinsic cohesive zone model expressed as

CðDn;DtÞ ¼minðfn;ftÞ þ Gn 1�
Dn

dn

� �a
þ hfn �fti

� �
Gt 1�

Dtj j

dt

� �b

þ hft �fni

" #
. (20)

The gradient of the potential leads to the normal and tangential tractions along the fractured surface,

TnðDn;DtÞ ¼ � a
Gn

dn
1�

Dn

dn

� �a�1

Gt 1�
jDtj

dt

� �b

þ hft � fni

" #
,

TtðDn;DtÞ ¼ � b
Gt

dt
1�
jDtj

dt

� �b�1

Gn 1�
Dn

dn

� �a
þ hfn � fti

� �
Dt

jDtj
. (21)

The normal and tangential tractions satisfy the symmetry and anti-symmetry requirements, respectively, according to
Eq. (11). The tangential traction provides a finite value at the initiation point (Dt ¼ 0), and therefore introduces the
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discontinuity, i.e.

lim
Dt!0þ

TtðDn;DtÞ ¼ � b
Gt

dt
Gn 1�

Dn

dn

� �a
þ hfn � fti

� �
,

lim
Dt!0�

TtðDn;DtÞ ¼ b
Gt

dt
Gn 1�

Dn

dn

� �a
þ hfn � fti

� �
, (22)

which corresponds to a feature of the extrinsic cohesive zone models.
The normal and tangential tractions are defined in a softening region associated with the final crack opening width

(dn, dt) and the conjugate final crack opening width (d̄n, d̄t). The final crack opening widths are expressed as

dn ¼ afn=smax; dt ¼ bft=tmax, (23)

which are associated with the fracture boundary conditions, such as the fracture energies and the cohesive strengths. The
conjugate final crack opening widths (d̄n, d̄t) are given by

d̄n ¼ dn � dn
hfn �fti

fn

� �1=a
; d̄t ¼ dt � dt

hft �fni

ft

� �1=b

, (24)

which satisfy the conditions of Ttðd̄n;DtÞ ¼ 0 and TnðDn; d̄tÞ ¼ 0, respectively. The energy constants are expressed as

Gn ¼ ð�fnÞ
hfn�fti=ðfn�ftÞ; Gt ¼ ð�ftÞ

hft�fni=ðft�fnÞ ðfnaftÞ (25)

for the different fracture energies. If the fracture energies are the same, one obtains the energy constants,

Gn ¼ �fn; Gt ¼ 1 ðfn ¼ ftÞ. (26)

With the same fracture parameters as illustrated in Fig. 3, the potential for the extrinsic cohesive zone model is plotted in
Fig. 5. The initial slope is excluded, and the traction discontinuity is introduced at zero separation. The shape of the
potential is concave because the potential is only associated to behaviors which occur after the bifurcation point (cf. Fig. 1).
In summary, rather than providing infinite slope, the cohesive interactions for the extrinsic cohesive zone model are
derived by taking the limit from the potential function. Thus, the discontinuities are naturally introduced at crack initiation.
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2.4. Remarks

The PPR potential for mixed-mode cohesive fracture is associated with physical macroscopic fracture parameters,
i.e. fracture energies (fn, ft), cohesive strengths (smax, tmax), softening curves shape (a, b) and the initial slope indicators
(ln, lt). In addition, the potential-based model for the extrinsic cohesive zone models is within the same framework as for
the intrinsic cohesive zone model. The characteristics of the proposed potential are summarized as follows:
�

Tab
Fra

fn

100

Tab
Fra

fn

100
Differentiates fracture energies (fn, ft) and cohesive strengths (smax, tmax) in fracture modes I and II.

�
 Suitable for various material softening responses, e.g. ‘‘ductile’’ (plateau), brittle, and quasi-brittle, because of the shape

parameters (a, b).

�
 The normal and tangential tractions (Tn, Tt) are defined by the final crack opening widths (dn, dt) and the conjugate final

crack opening widths (d̄n, d̄t).

�
 The initial slope indicators (ln, lt) control the artificial elastic behavior in the intrinsic cohesive zone model.

�
 The limit of the initial slope indicators results in the potential function for the extrinsic cohesive zone model.

�
 Obeys the symmetry condition, i.e. an exact differential with qTn=qDt ¼ qTt=qDn. The values of the differential at Dt ¼ 0

exists in the limit sense.

�
 The normal negative displacements are penalized to prevent material self-penetration. Alternative approaches,

involving contact mechanics, may also be used.

�
 Unloading/reloading are handled independently of the potential.

�
 Utilizes polynomial function to avoid the infinite final crack opening width of the exponential potential.

3. Path dependence of work-of-separation

Energy dissipated due to the fracture depends on separation paths when the mode I fracture energy (fn) is different
from the mode II fracture energy (ft). In order to evaluate the energy variation with respect to a path, the work-of-
separation (Wsep) is defined as follows:

Wsep ¼

Z
G

TnðDn;DtÞdDn þ

Z
G

TtðDn;DtÞdDt, (27)

where G is a separation path. The first term in the work-of-separation expression is the work done by the normal traction
(Wn), while the second term in the expression is the work done by the tangential traction (W t). In this study, we compare
le 2
cture parameters for the unified potential-based model (PPR)

(N/m) ft (N/m) smax (MPa) tmax (MPa) a b ln lt

200 3 12 3 3 0.01 0.01

0 Δt
	

Δn = Δr (	 = 90°)
Δn

Δr

Δt = Δr cos 	

Δn = Δr sin 	

Δt = Δr (	 = 0°)

Fig. 6. Proportional separation path (Dr) with the separation angle (y).

le 3
cture parameters for the model by Xu and Needleman (1993)

(N/m) ft (N/m) smax (MPa) tmax (MPa) r

200 3 12 0.5
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energy variations of the unified potential-based model (PPR) with those of the model by Xu and Needleman (1993) for
proportional separation paths and non-proportional paths. Tables 2 and 3 illustrate the fracture parameters utilized in this
investigation. The mode I fracture energy (fn) is arbitrarily selected as 100 N/m, and the mode II fracture energy (ft) as
200 N/m.

3.1. Proportional separation

The proportional separation path is associated with the separation angle (y), as shown in Fig. 6. The work-of-separation
for the unified potential-based model is expressed in terms of Dr and y,

Wsep ¼

Z dr

0
TnðDr sin y;Dr cos yÞ sin ydDr þ

Z dr

0
TtðDr sin y;Dr cos yÞ cos ydDr , (28)

where dr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

n þ d2
t

q
. When the separation angle is 90�, the material experiences pure mode I fracture for which the work-

of-separation is equal to the mode I fracture energy. When y ¼ 0�, the material experiences pure mode II fracture for which
the work-of-separation is the same as the mode II fracture energy. For the intermediate angles (0�oyo90�), i.e. mixed-
mode fracture, the work-of-separation is between the pure mode I and the pure mode II fracture energies.

Fig. 7(a)–(c) demonstrate the analytical variation of the work-of separation (Wsep), the work done by the normal traction
(Wn), and the work done by the tangential traction (W t) with respect to the change of the proportional angle, respectively.
When the separation angle is 90�, i.e. mode I fracture, Wsep and Wn increase from 0 to the mode I fracture energy (100 N/m)
with the increase of Dr , while W t remains zero. When y is equal to 0�, i.e. mode II fracture, Wsep and W t change from 0 to
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Fig. 7. The PPR potential-based method: (a) work-of-separation, (b) work done by the normal traction and (c) work done by the tangential traction with

respect to the change of the proportional angle, y.
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the mode II fracture energy (200 N/m) with the increase of Dr , while Wn remains zero. For the intermediate angles
(0�oyo90�), i.e. mixed-mode fracture, Wsep, Wn and W t vary monotonically including both the mode I and II fracture
behavior.

Accordingly, for the cohesive fracture model by Xu and Needleman (1993), the work-of-separation expression is given as
(cf. Eq. (28))

Wsep ¼

Z 1
0

TnðDr sin y;Dr cos yÞ sin ydDr þ

Z 1
0

TtðDr sin y;Dr cos yÞ cos ydDr . (29)

Fig. 8 illustrates the variation of Wsep, Wn and W t with respect to the separation angles. When the separation angle is 0�,
Wsep and W t reach the mode II fracture energy (200 N/m), and Wn keeps zero. Increasing the separation angle results in the
increase of the work done by the normal traction, and the decrease of Wsep and W t. However, both Wsep and W t increase
monotonically with respect to the increase of the separation angle from 0� to 15� (see Fig. 8(a) and (c)), but not with respect
to 30� in this example. The work-of-separation does not change monotonically under mixed-mode fracture condition, and
thus the exponential potential model does not guarantee the consistency of the cohesive constitutive model.
3.2. Non-proportional separation

For non-proportional separation paths, one could assume that material particles experience normal separation until
Dn ¼ Dn;max and then the complete tangential separation occurs, i.e. path 1 in Fig. 9(a). The other path is that material
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Fig. 9. Two arbitrary separation paths for the material debonding process: (a) non-proportional Path 1 and (b) non-proportional Path 2.
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separates along the tangential direction first until Dt ¼ Dt;max and then the failure occurs along the normal direction, i.e.
path 2 in Fig. 9(b). For the first path, the work-of-separation of the PPR model is evaluated by the following expression:

Wsep ¼

Z Dn;max

0
TnðDn;0ÞdDn þ

Z dt

0
TtðDn;max;DtÞdDt. (30)

Accordingly, the work-of-separation for the second path is expressed as

Wsep ¼

Z Dt;max

0
Ttð0;DtÞdDt þ

Z dn

0
TnðDn;Dt;maxÞdDn. (31)

Fig. 10 demonstrates the variation of the work-of-separation with respect to the two arbitrary separation paths. The
mode I fracture energy is selected as 100 N/m and the mode II fracture energy as 200 N/m. The work done by the normal
separation is indicated as a thin solid line while the work done by the tangential separation is given as a dashed line. For
the first non-proportional path (Fig. 9(a)), Dn;max ¼ 0 represents the pure mode II failure while Dn;max ¼ dn describes the
pure mode I failure. Then, the change of Dn;max from 0 to dn demonstrates the gradual change of the mode mixity from the
mode II fracture to the mode I fracture. The work done (W t) by the tangential traction, therefore, monotonically decreases
from ft to 0, while the work done (Wn) by the normal traction gradually increases from 0 to fn, as shown in Fig. 10(a). The
work-of-separation (Wsep) monotonically varies from the value of ft to the value of fn by increasing Dn;max from 0 to dn. In
the path 2 (Fig. 9(b)), when Dt;max is zero, the separation path illustrates the pure mode I failure while Dt;max ¼ dt represents
the pure mode II failure. The work-of-separation (Wsep) monotonically changes from the mode I fracture energy to the
mode II fracture energy although there is a kink point as shown in Fig. 10(b).

The separation at the kink point corresponds to the tangential conjugate final crack opening width (Dt;max ¼ d̄t). When
Dt is smaller than d̄t, the normal cohesive interaction is obtained by the derivative of the PPR potential with respect to the
normal separation. When Dt is greater than d̄t, the normal cohesive interaction is set to zero. The normal cohesive
interaction is then not smooth but piece-wise continuous at Dt;max ¼ d̄t in this example. The integration of the normal
cohesive interaction can also be piece-wise continuous at the same point. Therefore, the work done (Wn) by the normal
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separation changes from fn to zero between Dt;max ¼ 0 (pure mode I) and Dt;max ¼ d̄t (pure mode II), and demonstrates
piece-wise continuity at Dt;max ¼ d̄t. As a result, the work-of-separation (Wsep ¼Wn þW t) also have the kink point at the
same location.

Additionally, similar energy variation is expected when the mode I fracture energy is greater than the mode II fracture
energy (e.g. fn ¼ 200 N=m, ft ¼ 100 N=m), as shown in Fig. 11. This is because the potential function is based on the
symmetric boundary conditions of fracture. The work-of-separation curve monotonically changes from one fracture mode
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to the other fracture mode. The kink point occurs in the first separation path because the tangential cohesive interaction
(Tt) is piece-wise continuous at Dn;max ¼ d̄n.

For the model by Xu and Needleman (1993), a similar investigation was implemented by van den Bosch et al. (2006).
The work-of-separation for the first non-proportional path in Fig. 9(a) is expressed as

Wsep ¼

Z Dn;max

0
TnðDn;0ÞdDn þ

Z 1
0

TtðDn;max;DtÞdDt. (32)

The work-of-separation for the second path (Fig. 9(b)) is expressed as

Wsep ¼

Z Dt;max

0
Ttð0;DtÞdDt þ

Z 1
0

TnðDn;Dt;maxÞdDn. (33)

The work-of-separations for the two arbitrary separation paths are plotted in Figs. 12 and 13. Fig. 12 is the case when the
mode II fracture energy is greater than the mode I fracture energy (e.g. fn ¼ 100 N=m, ft ¼ 200 N=m), and Fig. 13 is the
case of fn4ft (e.g. fn ¼ 200 N=m, ft ¼ 100 N=m). With respect to increasing the maximum normal separation (Dn;max),
the work-of-separation for the path 1 (Figs. 12(a) and 13(a)) does not monotonically vary from the mode I fracture energy to
the mode II fracture energy. The second path in Fig. 12(b) demonstrates the monotonic variation of the work-of-separation
with the change in the maximum tangential separation (Dt;max). The kink point in Fig. 12(b) results from cutting off the
negative normal traction region. In this example, when the tangential separation is greater than a certain value, the
exponential potential leads to negative normal traction. Since the work done should always be positive, we assume that
the normal cohesive interaction set to be zero within the negative traction range. Therefore, Wn and Wsep are not smooth
but piece-wise continuous as shown in Fig. 12(b). Additionally, for the path 2 in Fig. 13(b), the work done by normal
separation does not decrease to zero although material particles experience large shear separation.

4. Mixed-mode fracture verification

The PPR potential-based model for cohesive fracture is verified by simulating a mixed-mode fracture problem, the
mixed-mode bending (MMB) test. The MMB test was developed by Reeder and Crews (1990) in order to investigate
the fracture toughness variation with respect to the mode mixity. The test has been standardized by ASTM (2006). The
configuration of an MMB test is the combination of the double cantilever beam test (mode I loading) and the end-notch
flexure test (mode II loading) as shown in Fig. 14. Numerical simulations of the mixed-mode fracture are implemented by
using the commercial software ABAQUS with a user-defined element (UEL) subroutine. The formulation of cohesive surface
elements is derived by the virtual work formulation with the updated Lagrangian finite element discretization.

In this numerical verification, we simulate two hypothetical cases, one with the same fracture energy
(fn ¼ ft ¼ 1 N=m) and another with different fracture energies (fn ¼ 1 N=m, ft ¼ 2 N=m). The elastic modulus is
Δ
h

a

a0

c P

P c
L

P c+L
L LL

B: Thickness

Rigid lever

Fig. 14. Mixed mode bending test.

Table 4
Geometry of the MMB test specimen

L ðmmÞ h ðmmÞ a0 ðmmÞ c ðmmÞ B ðmmÞ

51 1.56 33.7 60 25.4
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122 GPa, and Poisson’s ratio is 0.25. The shape parameters are fixed to be equal to three (a ¼ b ¼ 3), while the initial slope
indicators are selected as a small value within numerical stability limits, e.g. ðln;ltÞ 2 ½0:005; 0:025�. The specimen size is
provided in Table 4. The numerical results are compared to the analytical solution provided by Mi et al. (1998). The
analytical solution is given in Appendix A.

Fig. 15 compares the analytical solutions to the numerical results for the same fracture energy. The numerical
simulation results converge to the analytical solutions with respect to the increase in the material cohesive strength. This is
because the higher cohesive strength decreases the fracture process zone, and result in a more brittle failure.

Next, Fig. 16 illustrates the agreement of the analytical solutions and the numerical simulation results for the different
fracture energies in modes I and II. Mode I fracture energy is 1 N/m and the mode II fracture energy increased to 2 N/m. Due
to the increase of the mode II fracture energy, the analytical solution of linear elastic fracture mechanics (LEFM) shifts
upward (with respect to Fig. 15) which represents a higher structural load capacity locally. In the simulations, the shear
strength is increased from 100 to 500 MPa with a fixed normal strength of 10 MPa (Fig. 16(a)) and 20 MPa (Fig. 16(b)). The
increase of the normal and shear strength demonstrates the convergence to the analytical solutions of the beam theory and
the LEFM.

5. Conclusions

The unified potential-based constitutive model (PPR) is proposed for cohesive fracture to characterize different fracture
energies (fn,ft) and cohesive strengths (smax, tmax). The potential-based model is applicable to various material softening
responses, i.e. plateau-type (e.g. ductile), brittle and quasi-brittle, due to controllable softening given by the shape
parameters (a, b). The PPR model also includes initial slope indicators (ln, lt) to control elastic behavior, which can be
selected as small values within numerical stability limits. The zero limit of the initial slope indicators leads to the potential
function for extrinsic cohesive zone models. The cohesive interactions (Tn, Tt) are defined in a rectangular region associated
with the final crack opening widths (dn, dt) and the conjugate final crack opening widths (d̄n, d̄t). The PPR potential-based
model demonstrates that the work-of-separation depends on the separation paths, i.e. proportional and non-proportional
paths, and monotonically changes from the mode I fracture energy to the mode II fracture energy with respect to the
separation paths. The monotonic change of the work-of-separation demonstrates the consistency of the cohesive
constitutive model. The numerical investigation of the mixed-mode bending test not only verifies the effect of different
fracture energies (in modes I and II), but also demonstrates the convergence to the corresponding analytical solutions of
beam theory and LEFM.
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Appendix A. Analytical solution for the mixed-mode bending (MMB) test

The analytical solution for the mixed-mode bending (MMB) test is given by Mi et al. (1998). The solution consists of
three parts based on the linear elastic beam theory (one part) and linear elastic fracture mechanics (two parts). The beam
theory provides the linear analytical solution,

D ¼
2

3

3c � L

4L

� �
Pa3

0

EI
, (34)

where I is the second moment of area and E is the elastic modulus. Next, the concept of the fracture energy based on linear
elastic fracture mechanics provides the following load (P) versus displacement relationship (D),

D ¼
2PI

3EI

8BEI

8P2
I =fn þ 3P2

II=ð8ftÞ

 !3=2

, (35)

where

PI ¼ 3c � Lð ÞP=ð4LÞ; PII ¼ c þ Lð ÞP=L. (36)

This expression is valid when a crack length (a) is smaller than the half length (L) of a beam (aoL). When a is greater than L,
one obtains another expression,

D ¼
2

3

3c � L

4L

� �
Pa3

EI
, (37)
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for the relationship between load (P) and displacement (D). For a given load and displacement, the a can be evaluated by
solving following expression:

8P2
I

fn

þ
3P2

II

8ft

�
8PIPII

ft

 !
a2 �

3P2
IIL

2ft

�
8PIPIIL

ft

 !
aþ

3P2
IIL

2

2ft

� 8BEI ¼ 0. (38)
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