
P
g

K
a

b

a

A
R
R
A

K
P
W
F
T
P
m

1

t
t
2
a
t
p
m
c
p
M
c
s

r
i
p
a
i
u
B
w

0
d

Mechanics Research Communications 38 (2011) 431– 436

Contents lists available at ScienceDirect

Mechanics  Research  Communications

j o ur nal homep age: www.elsev ier .com/ locate /mechrescom

arallel  computing  of  wave  propagation  in  three  dimensional  functionally
raded  media

youngsoo  Parka, Glaucio  H.  Paulinob,∗

School of Civil & Environmental Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul, Republic of Korea
Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, IL 61801, United States

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 23 December 2010
eceived in revised form 11 April 2011
vailable online 22 April 2011

a  b  s  t  r  a  c  t

Parallel  computing  techniques  are  employed  to  investigate  wave  propagation  in three-dimensional
functionally  graded  media.  In  order  to obtain  effective  and  efficient  parallel  finite  element  mesh  rep-
resentation,  a topology-based  data  structure  (TopS)  and  a  parallel  framework  for  unstructured  mesh
(ParFUM) are  integrated.  The  parallel  computing  framework  is  verified  by  solving  a  cantilever  example,
while  the  Rayleigh  wave  speed  in  functionally  graded  media  is  investigated  by comparing  the  results  with
eywords:
arallel computing
ave propagation

unctionally graded materials
opology based data structure (TopS)
arallel framework for unstructured

the  homogeneous  case.  The  computational  results  illustrate  that  when  the  elastic  modulus  of  a graded
media  increase  along  the depth  direction,  the  Rayleigh  wave  speed  of  a  graded  media  is higher  than  the
speed  of a homogeneous  media  with  the  same  material  properties  on  the  surface.

© 2011 Elsevier Ltd. All rights reserved.
eshes (ParFUM)

. Introduction

Natural and engineered materials may  display spatial varia-
ion of microstructure to improve performance such as hardness,
oughness, thermal resistance, corrosion resistance, etc. (Paulino,
002). These materials are named as functionally graded materi-
ls (FGMs). For example, bamboo has an optimized microstructure
hat corresponds to the concept of FGMs. In order to achieve high
erformance in both thermal and mechanical resistances for ther-
al  protection structures, one phase of a microstructure can be

eramic that provides heat and corrosion resistance, while the other
hase can be metallic that leads to high strength and toughness.
oreover, in order to obtain an efficient and multifunctional con-

rete structure, fiber volume fraction can spatially vary within a
tructure.

Because of their promising high performances, dynamic
esponses of FGMs have been invested by many researchers. For
nstance, Praveen and Reddy (1998) studied functionally graded
late whose material properties vary along the thickness direction,
nd demonstrated that the gradients in material properties signif-
cantly influence the response of FGM plates. Han and Liu (2002)

tilized quadratic layer element to analyze SH waves in FGM plates.
ased on the elastic wave theory, Li et al. (2004) investigated Love
aves in a functionally graded piezoelectric material layer. Zhang

∗ Corresponding author. Tel.: +1 217 333 3817; fax: +1 217 265 8641.
E-mail address: paulino@uiuc.edu (G.H. Paulino).

093-6413/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.mechrescom.2011.04.007
and Paulino (2007) presented the effect of material gradation on
characteristics of wave propagation and stress redistribution of
FGMs. Recently, Anandakumar and Kim (2010) performed a modal
analysis of a functionally graded cantilever beam.

The present paper focuses on three-dimensional dynamic
responses of FGMs by means of parallel computing techniques
in order to tackle large-scale problems. Especially, the Rayleigh
wave in functionally graded media is of interest to this study. A
novel parallel computing framework is developed by integrating
a topology based data structure (TopS) and a parallel framework
for unstructured mesh (ParFUM). The remaining of the paper
is organized as follows. In the next section, a computational
framework for the parallel computation of the wave propagation
is presented. Section 3 demonstrates the verification and run-
time performance of the computational framework, while Section
4 investigates three-dimensional wave propagation in function-
ally graded media. Finally, concluding remarks are provided in
Section 5.

2. Basic computational framework

A governing equation of the Galerkin finite element formulation
is obtained from the principle of the virtual work. The summation
of the virtual strain energy and the virtual kinetic energy is equal

to the virtual work done by the external traction (Text):∫

�

(
ı� : � + ıu · �ü

)
d  ̋ =

∫
�

ıu · Text d� (1)
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ig. 1. Illustration of mesh partition, and shared nodes along the mesh partition
oundary.

here  ̋ and � are domain and boundary, respectively. Small
eformation condition is assumed, and � and � are strain and stress
ensors, respectively. In addition, u is a displacement vector, � is
he density, and the superimposed dot denotes the time derivative.
he weak form is discretized into finite elements, which leads to the
ollowing equation of motion, i.e. Mün + Kun = Fext , where M and

 are the mass matrix and the stiffness matrix, respectively, and
ext is the external force vector. Additionally, ün and un are nodal
cceleration and displacement vectors at time n, respectively. The
quation of motion is solved by employing the central difference
ethod, i.e. explicit time integration (Newmark, 1959). The nodal

isplacement (un+1), velocity (u̇n+1) and acceleration (ün+1) at time
 + 1 are approximated as:

n+1 = un + �t  u̇n + �t2

2
ün (2)

˙ n+1 = u̇n + �t

2
(ün + ün+1) (3)

¨ n+1 = M−1(Fext
n+1 − Fint

n+1) (4)

here Fint is the internal force vector. Note that one does not need
o solve a linear system of equations if one utilizes a lumped mass

atrix, i.e. diagonal matrix. In the current study, a lumped mass
atrix is obtained by considering diagonal terms of the consistent
ass matrix and scaling them to preserve the total mass (Hughes,

000).
In parallel computing, the time integration algorithm requires

ommunications between partitioned meshes because the evalua-
ion of nodal accelerations needs adjacent element information. In
rder to obtain adjacent element information, the concept of a sum
ver shared nodes (Lawlor et al., 2006) is utilized. For example,

 finite element mesh is decomposed into two chunk of meshes:

ne chunk with dark gray elements and the other chunk with light
ray elements, as shown in Fig. 1. Shared nodes are defined along
he partitioned mesh boundary, as described in dark gray nodes.
he internal force at shared nodes is obtained by adding the inter-

Fig. 2. (a) Geometry of a cantilever and (b) ap
Communications 38 (2011) 431– 436

nal forces of adjacent elements. In this case, the communication
between partitioned meshes is needed because adjacent elements
are not in the same mesh partition. Note that nodal accelerations
of white nodes are evaluated locally because all the adjacent ele-
ments are within the same mesh partition. Moreover, all nodal
displacements and velocities are obtained locally, and thus the
communication is not needed for the evaluation of nodal displace-
ments and velocities.

The parallel finite element analysis framework is implemented
by means of TopS and ParFUM. TopS is a topology based data struc-
ture, and provides compact and complete topological information
such as node, element, vertex,  edge and facet for finite element mesh
representation (Celes et al., 2005a; Paulino et al., 2008). Note that
node and element are explicitly represented while vertex, edge and
facet are implicitly represented by using concrete types (Celes et al.,
2005b). ParFUM is a parallel programing framework for scalable
engineering applications like the finite element analysis (Lawlor
et al., 2006). It supports parallel communications between parti-
tioned meshes through introducing ghosts and shared nodes. Note
that ParFUM is built on top of a parallel programing interface,
named as CHARM++, which provides capabilities such as dynamic
load balancing, automatic check-pointing, communication opti-
mization and processor virtualization (Kale and Krishnan, 1996;
Kale and Zheng, 2009; Lawlor et al., 2006). Instead of integrating
TopS and ParFUM, one can alternatively employ a parallel topology
based data structure, called ParTopS, for a parallel finite element
mesh representation (Espinha et al., 2009).

For the consideration of functionally graded media, the gener-
alized isoparametric formulation (GIF) (Kim and Paulino, 2002) is
utilized. Material properties at integration points are interpolated
from the nodal quantities by using the same shape functions as
the geometric and displacement representation (i.e. isoparamet-
ric). For example, the elastic modulus and density at the numerical
integration points are evaluated as:

E =
nel∑
i=1

NiEi, � =
nel∑
i=1

Ni�i (5)

where nel is the number of nodes in an element, Ni are the Lagrange
basis shape functions, and Ei and �i are elastic modulus and density
at nodal locations. The GIF approach reduces stress discontinuity,
and generally provides more accurate stress distributions in graded
media. In addition, Santare et al. (2003) compared the conventional
elements approach (i.e. material properties are constant within an
element) to the graded element approach, and demonstrated that
the graded element approach generally provided a smoother stress
field for dynamic problems.

Additionally, the domain decomposition is performed by using a

software package, i.e. METIS, whose algorithms are based on mul-
tilevel graph partitioning (Karypis and Kumar, 1998a,b). For the
visualization of large scale data, the Parallel Visualization Applica-
tion, i.e. ParaView (Squillacote, 2006), can be utilized.

plied sinusoidal transient force, P(t/T).
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Fig. 3. Convergence of computational results to the analytical solution under the
mesh refinement.

F
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Table 1
Elastic material properties of the homogeneous media.

CP (km/s) CS (km/s) � (kg/m3) E (GPa) �

Homogeneous 2 1.2 2 7.02 0.219

that the natural frequencies (ω ) are expressed as �2 EI/m;
ig. 4. Parallel runtime performance with respect to the number of processors.

. Verification and runtime performance

The parallel computational framework is verified by solving a
antilever example, and its parallel runtime performance is pre-
ented. The geometry of a cantilever is shown in Fig. 2(a), and a

inusoidal transient load (P(t/T) = P0 sin (�t/T)) is applied at the tip
f the cantilever, as shown in Fig. 2(b), where t and T are time
nd period, respectively. The problem has an analytical solution,

Fig. 5. Geological system: (a) homogeneous m
Fig. 6. Illustration of a partitioned finite element mesh (domain decomposition).

given by Warburton (1976).  For 0 ≤ t ≤ T, the tip displacement of
the cantilever (utip) is expressed as:

utip(t) = 4P0

m

∑
i

1
ωi

∫ t

0

sin
�


T
sin ωi(t − 
) d
 (6)

where m is the total mass, and ωi are natural frequencies. When t is
greater than T, i.e. t > T, the external transient load is zero, and thus
the response corresponds to the free vibration in this example. The
tip displacement is given as:

utip(t) = 4P0L3

EI

∑
i

�ωiT

(�iL)4(�2 − (ωiT)2)

{
sin ωi(t − T) + sin ωit

}
(7)

where E is the elastic modulus, I is the second moment of
cross-sectional area, and �i is a dimensional parameter. Note√
i i
and �i are the successive roots of the frequency equation, i.e.
cos �L cosh �L + 1 = 0. The roots are given as �1L = 1.875, �2L = 4.694,
�3L = 7.855 and �iL � (i − 0.5)� for i ≥ 4.

edia and (b) functionally graded media.
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Fig. 7. Dynamic responses of the homogeneous case: (a) vertical displacement amplitude versus time and (b) distance from the source versus the maximum displacement
amplitude and corresponding time.

Table 2
Elastic material properties of the functionally graded media.

CP (km/s) CS (km/s) � (kg/m3) E (GPa) �

Graded layer 1 2/3.6 1.2/2.16 2/3.6 7.02/40.94 0.219/0.219
Layer  2 3.5 2.1 2.3 24.7 0.336
Layer  3 4.5 2.1 2.3 27.6 0.361
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The cantilever domain is discretized into linear tetrahedral ele-
ents (Tet4), with 2 × 2 × 40, 4 × 4 × 80, and 8 × 8 × 160 mesh

rids, which lead to the element size of 0.05, 0.025 and 0.0125,
espectively. The numbers of nodes are 369, 2025 and 92769, and
he numbers of elements are 800, 6400 and 409600 for each dis-
retization. The tip displacement (utip) versus time t curves are
lotted in Fig. 3. Computational results converge to the analytical
olution under the mesh refinement.

For the estimation of the parallel runtime performance, Intel
4 Cluster Abe is utilized, which is located at the National Cen-
er for Supercomputing Applications (NCSA) at the University of
llinois at Urbana-Champaign. The peak floating point operations
er second (FLOPS) is 89.47 TF, the processor is Intel 64 2.33 GHz
ual socket quad core, and each core has 1 GB memory. The finite
lement mesh with the 8 × 8 × 160 grid is decomposed into 32, 64,
28, 256, 512 and 1024 domains, and each domain has 12800, 6400,
200, 1600, 800 and 400 tetrahedral elements, respectively. Each
omain is assigned into each processor, and the parallel runtime is
lotted in Fig. 4. The runtime decreases almost in a half up to the
se of 512 processors while the number of processors doubles in
his example. When the number of elements in each processor is
mall, which corresponds to the case of 1024 decomposed domain,
he parallel efficiency decreases, as expected.

. Three-dimensional geology simulation

In this section, dynamic responses and the Rayleigh wave speed
re investigated in a geological system. Note that Rayleigh waves
ere first found by Rayleigh (1885);  the Rayleigh wave velocity

s related to material properties such as density, elastic modulus
nd Poisson’s ratio. Because of its importance, Rayleigh waves have
een utilized to investigate in many research areas such as seismol-
gy, geology, material science, etc. (Fourney and Rossmanith, 1980;
ielo et al., 1985; Snieder, 1988; Simons et al., 1999).
A geological domain is considered as a 10 km × 10 km × 10 km
exahedron (Fig. 5). A point source is applied at the center of the
op surface with a sinusoidal transient load, i.e. P(t) = sin (�t/2),
or 2 seconds. Two examples are investigated: one with a homo-
2.3 28.7 0.430

geneous media, and the other with a graded media, as shown in
Fig. 5(a) and (b), respectively. The domain is discretized into a
50 × 50 × 50 mesh grid with linear tetrahedral elements. The num-
ber of nodes is 132651, and the number of elements is 625000.
Each color in Fig. 6 illustrates the chunk of meshes assigned to each
processor.

The homogeneous example (Fig. 5(a)) is first investigated, and
its material properties are illustrated in Table 1. The displacement
amplitude at the distance (r) from the source point is observed
on the top surface (z = 0). Fig. 7(a) illustrates the time versus the
vertical displacement curves with respect to the distance from the
source point, i.e. r = 200 m,  1 km,  2 km,  3 km and 4 km. The increase
of r leads to the longer time for the wave to arrive and the decrease
of the vertical displacement amplitude. In addition, the distance
(r) versus the maximum amplitude relation is plotted in the solid-
circle line in Fig. 7(b). The maximum amplitude decreases in the
proportion of the square root of the distance (r), which corresponds
to the solid line. The distance (r) versus the time at the maximum
amplitude is also plotted in the white-circle line. The slope of the
white-circle line (i.e. distance versus time) represents the inverse
of the Rayleigh wave speed obtained from the numerical simu-
lation. The inverse of the slope is approximately 1 km/s, which
corresponds to the theoretical value of the Rayleigh wave speed
(CR = 1.1 km)  in the homogeneous media.

Next, the functionally graded domain is investigated, shown in
Fig. 5(b). The domain consists of four layers: one graded layer and
three homogeneous layers. The material properties of each layer are
summarized in Table 2 (Pereyra et al., 1992). In the graded layer,
the elastic modulus and Poisson’s ratio vary linearly along the depth
direction. Note that the material properties on the surface are the
same as the material properties of the previous (homogeneous)
example. However, the elastic modulus of the top layer increases
from 7 GPa to 40 GPa with respect to the increase of the depth.

The vertical displacement on the top surface with respect to time

is plotted in Fig. 8(a). Because of the material gradation, Fig. 8(a)
illustrates that the maximum amplitudes are lower than those in
Fig. 7(a). Similarly, in Fig. 8(b), the maximum amplitude versus
distance (r) is plotted in the solid-circle line. Two functions are
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ig. 8. Dynamic responses of the functionally graded case: (a) vertical displacement a
mplitude and corresponding time.

lso plotted in solid and dashed lines, which are inverse propor-
ional to

√
r and r, respectively. Note that, in the graded media, the

aximum amplitude is not proportional to the one over square
oot r, but it is in-between 1/r  and 1/

√
r for this example. The dis-

ance (r) versus the time at the maximum amplitude is also plotted
n the white-circle line. The computed Rayleigh wave speed (i.e.
nverse of the slope) is 1.25 km/s, which is higher than the homoge-
eous media although the surface material properties of the graded
edia are the same as the material properties of the homogeneous

ase. This is because Rayleigh waves are associated with surface
ovements within a shallow depth. Thus, the change of the elas-

ic modulus within a shallow depth influences the Rayleigh wave
peed. For example, when the elastic modulus increases along the
epth direction, the Rayleigh wave speed increases because, in
eneral, the higher the elastic modulus, the faster the Rayleigh
ave speed.

. Concluding remarks

The Rayleigh wave speed in functionally graded media is investi-

ated. Three-dimensional computational results illustrate that the
ayleigh speed in a graded media is different from the speed in

 homogeneous media with the same material properties on the
urface. In order to tackle large scale problems, a parallel computa-

able A.1
escription of acronyms associated with parallel computational frameworks.

Acronyms Description 

TopS • A topology based data structure for an efficient finite element
mesh representation
•  The data structure provides compact and complete topologica
information such as node, element, vertex,  edge and facet
•  Node and element are explicitly represented, while vertex,  edg
and facet are implicitly represented by using concrete types

ParFUM • A parallel programing framework for engineering application
(e.g. finite element analysis)
• Communications between partitioned meshes are performed
introducing ghosts and shared nodes
• ParFUM is built on top of CHARM++

Charm++ • A parallel programing interface 

•  The interface supports capabilities including dynamic load ba
automatic check-pointing, communication optimization, and p
virtualization

ParTopS • A topology based data structure for a parallel finite element 

mesh representation

METIS • A domain decomposition package based on multilevel graph 

partitioning algorithms

ParaView • A visualization software for large scale data 
ude versus time and (b) distance from the source versus the maximum displacement

tion framework is developed by integrating TopS and ParFUM. The
computational framework is verified by solving a cantilever exam-
ple, while the parallel runtime performance is estimated in order
to demonstrate a potential scalability of the parallel computation
framework. Furthermore, the research will be extended to investi-
gate nonlinear dynamic crack propagation problems by using the
cohesive zone modeling.
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Appendix A. Appendix
A brief explanation on acronyms (i.e. TopS, ParFUM, CHARM++,
ParTopS, METIS, ParaView) is provided in Table A.1. For more
detailed information associated with implementation and algo-
rithms, one may  read the corresponding references.
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