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a b s t r a c t

A potential-based cohesive zone model, so called the PPR model, is implemented in a com-
mercial software, e.g. ABAQUS, as a user-defined element (UEL) subroutine. The intrinsic
cohesive zone modeling approach is employed because it can be formulated within the
standard finite element framework. The implementation procedure for a two-dimensional
linear cohesive element and the algorithm for the PPR potential-based model are presented
in-detail. The source code of the UEL subroutine is provided in Appendix for educational
purposes. Three computational examples are investigated to verify the PPR model and
its implementation. The computational results of the model agree well with the analytical
solutions.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The cohesive zone model has been a powerful concept to approximate nonlinear fracture processes [1,2]. The concept of
the cohesive zone model was presented by Barenblatt [3] and Dugdale [4]. Since then, the model has been utilized to inves-
tigate a wide range of failure phenomena, which include, for example, fracture of quasi-brittle materials [5–8], bond-slip in
reinforced concrete [9], delamination in adhesive bond joints [10,11], and matrix/particle debonding [12–14].

One of essential aspects in the cohesive zone model is the choice of a traction–separation relation. Because most traction–
separation relationships display limitations, especially under mixed-mode conditions, the relationship should be selected
with great caution [15]. Among various traction–separation relationships, the so-called PPR potential based model demon-
strates the consistency of the constitutive relationship under mixed-mode conditions while considering different fracture
energies with respect to fracture modes [15]. In order to benefit from the PPR potential-based model and capabilities of exist-
ing commercial softwares for nonlinear fracture analysis, one could develop a user-defined element (UEL) subroutine for the
PPR model in a commercial software such as ABAQUS [16].

Computational implementation of an existing algorithm (or model) may be a challenging task, especially for beginners in
a new research area, because the detailed procedure or source codes are not generally provided in scientific journal papers.
However, in order to facilitate research and to benefit from existing scientific contributions for researchers and engineers,
there are several papers which address computational implementations. For instance, Sigmund [17] presented an implemen-
tation of a topology optimization code for compliance minimization of statically loaded structures. Giner et al. [18] demon-
strated an ABAQUS implementation of the extended finite element method as a UEL subroutine for linear elastic fracture
analysis.
. All rights reserved.
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Nomenclature

ap radius of particle
Bc global displacement–separation relation matrix
Dc material tangent stiffness matrix of the cohesive zone model
Em, Ep elastic moduli of matrix and particle
f volume fraction of particle
fcoh internal force vector of a cohesive surface element
Kcoh tangent matrix of a cohesive surface element
L local displacement–separation relation matrix
m, n nondimensional exponents in the PPR model
N shape functional matrix
R rotational matrix of nodal displacements
Tc cohesive traction vector
Text external traction vector
Tn, Tt normal and tangential cohesive tractions
Tt

n, Tt
n normal and tangential cohesive tractions for the unloading/reloading relation

u displacement field
�u nodal displacement vector in the global coordinates
~u nodal displacement vector in the local coordinates
x local coordinates
X global coordinates
a, b shape parameters in the PPR model
at, bt shape parameters in the unloading/reloading relation
C boundary of external traction
Cc boundary of cohesive fracture surface
Cn, Ct energy constants in the PPR model
dn, dt normal and tangential final crack opening widths
dnc, dtc normal and tangential critical opening displacements
�dn, �dt normal and tangential conjugate final crack opening widths
D separation field in the local coordinateseD nodal separation vector in the local coordinates
Dn, Dt normal and tangential separations along fracture surface
Dnmax , Dtmax maximum normal and tangential separations in a loading history
�� macroscopic strain
h angle between the global coordinates and the local coordinates
� Cauchy strain
kn, kt initial slope indicators in the PPR model
K coordinate transformation matrix
mm, mp Poisson’s ratios of matrix and particle
�r macroscopic stress
�rp average stress in particle
r Cauchy stress
rmax, smax normal and tangential cohesive strengths
/n, /t normal and tangential fracture energies
W potential function for cohesive fracture
X domain
h � i Macauley bracket
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The present paper focuses on the implementation of the PPR potential-based cohesive zone model in ABAQUS as a UEL
subroutine. The UEL subroutine is provided in Appendix for educational purposes. Notice that the finite element-based
intrinsic cohesive zone modeling approach is employed because it can be easily implemented in an existing standard finite
analysis code. Furthermore, the PPR model can also be implemented in conjunction with other computational techniques
such as extrinsic cohesive zone modeling [19,20], extended/generalized finite element method (XFEM/GFEM) [21,22], and
embedded discontinuities [23–25]. However, as indicated above, the intrinsic model is the approach of choice in this paper.

The remainder of the paper is organized as follows. The formulation of cohesive elements and the PPR potential based
model are explained in the following section. Then, Section 3 presents the computational implementation of the PPR poten-
tial-based model for a two-dimensional linear cohesive element. Section 4 investigates three examples: simple patch test,
mixed-mode bending test and matrix/particle debonding. Finally, the paper is summarized in Section 5.



K. Park, G.H. Paulino / Engineering Fracture Mechanics 93 (2012) 239–262 241
2. Cohesive zone model

The cohesive zone model mitigates stress singularity in linear elastic fracture mechanics, and represents the nonlinear
fracture process zone ahead of a crack tip, as illustrated in Fig. 1. The cohesive crack propagation may consist of four stages:
elastic, initiation, softening and complete failure [26,27]. The intrinsic cohesive zone modeling approach also includes the
four stages, and thus the model can be implemented within a standard finite element framework. For the constitutive rela-
tionship of cohesive fracture, the PPR potential-based model is utilized in conjunction with an unloading/reloading relation,
as discussed in the following subsections.

2.1. Finite element formulation

The weak form of the governing equation is obtained from the principle of virtual work. The summation of the virtual
strain energy in the domain (X) and the cohesive fracture energy evaluated on the fracture surface (Cc) is equal to the virtual
work done by external traction (Text) on boundary (C)
Z

X
d� : rdV þ

Z
Cc

dD � Tc dS ¼
Z

C
du � Text dS ð1Þ
where d�, du and dD are virtual strain, virtual displacement and virtual separation, respectively. In addition, r is stress tensor
in the deformed configuration (i.e. Cauchy stress), while Tc is cohesive traction along the fracture surface. The first term in
the left hand side of Eq. (1) is associated with the internal force of volumetric elements (or bulk elements), while the second
term is related to the internal cohesive force of cohesive surface elements. The term in the right hand side of Eq. (1) corre-
sponds to the external force.

The domain (X) is discretized into finite elements, and the displacement field (u) is approximated by interpolating the
nodal displacement ð�uÞ with shape functions,
uðXÞ ¼ N�u ð2Þ
where N is a shape function matrix, and X denotes the global coordinates.
In addition, the local separation (D) is approximated by using the nodal displacement ð�uÞ. In order to obtain the local sep-

aration based on the global nodal displacement, the global coordinates (X) are first transformed to the local coordinates (x) of
a cohesive element, i.e.
x ¼ KX ð3Þ
where K is a coordinate transformation matrix. Similarly, the global nodal displacement ð�uÞ is transformed to the local nodal
displacement ð~uÞ by a rotational matrix (R),
~u ¼ R�u ð4Þ
where R consists of a coordinate transformation matrix (K). An example of R for a two-dimensional linear cohesive element
is provided in Section 3.1. From the local nodal displacement, one obtains the local nodal displacement jump, or separation,
ðeDÞ along the surface normal and tangential directions, i.e. the relationship between nodal displacements and nodal
separation
Cohesive zone

Fig. 1. Illustration of the cohesive zone modeling concept.



242 K. Park, G.H. Paulino / Engineering Fracture Mechanics 93 (2012) 239–262
eD ¼ L~u ð5Þ
where L is a local displacement–separation relation matrix. Then, separation (D(x)) along a cohesive surface element is inter-
polated from the nodal separation by using shape functions,
DðxÞ ¼ N eD: ð6Þ
Finally, the substitution of Eqs. (4) and (5) into Eq. (6) leads to the relationship between the local separation and the global
nodal displacement, i.e.
DðxÞ ¼ Bc �u ð7Þ
where Bc is a global displacement–separation relation matrix (i.e. Bc = NLR).
Based on the approximated displacement field, the internal force vector (fcoh) of a cohesive surface element is given as
f coh ¼
Z

Cc

BT
c Tc dS: ð8Þ
The gradient of the internal cohesive force vector leads to the tangent matrix (Kcoh) of a cohesive surface element, i.e.
Kcoh ¼
@f coh

@�u
¼
Z

Cc

BT
c
@Tc

@D
@D
@�u

dS ¼
Z

Cc

BT
c
@Tc

@D
Bc dS: ð9Þ
Note that Tc and @Tc/@D are obtained from the PPR potential-based cohesive zone model, as presented in the following sub-
section. In addition, the formulation is applicable for both two- and three-dimensional finite element implementations. The
implementation procedure of a two-dimensional linear cohesive element is discussed in Section 3.

2.2. PPR Potential-based cohesive zone model

The cohesive traction–separation relationship is obtained from a potential-based cohesive zone model, so-called the PPR
model [15,1]. The potential of cohesive fracture is given by
WðDn;DtÞ ¼minð/n;/tÞ þ Cn 1� Dn

dn

� �a m
a
þ Dn

dn

� �m

þ h/n � /ti
� �

Ct 1� jDtj
dt

� �b n
b
þ jDt jdt

� �n

þ h/t � /ni
" #

: ð10Þ
where h � i is the Macauley bracket, i.e.
hxi ¼
0; ðx 6 0Þ
x; ðx > 0Þ:

�
ð11Þ
Because of the nature of the potential, the derivatives of the PPR potential with respect to the normal and tangential sepa-
rations lead to the normal and tangential cohesive tractions,
TnðDn;DtÞ ¼
Cn

dn
m 1� Dn

dn

� �a m
a
þ Dn

dn

� �m�1

� a 1� Dn

dn

� �a�1 m
a
þ Dn

dn

� �m
" #

Ct 1� jDt j
dt

� �b n
b
þ jDt j

dt

� �n

þ h/t � /ni
" #

;

TtðDn;DtÞ ¼
Ct

dt
n 1� jDtj

dt

� �b n
b
þ jDtj

dt

� �n�1

� b 1� jDt j
dt

� �b�1 n
b
þ jDt j

dt

� �n
" #

Cn 1� Dn

dn

� �a m
a
þ Dn

dn

� �m

þ h/n � /ti
� �

Dt

jDt j
; ð12Þ
respectively. Notice that the normal and tangential tractions satisfy basic symmetry and anti-symmetry requirements (with
respect to Dt), i.e. Tn(Dn, Dt) = Tn(Dn, �Dt) and Tt(Dn, Dt) = �Tt(Dn, �Dt). The value of Tt(Dn, Dt) at Dt = 0 exists in the limit
sense. In addition, the PPR potential is defined within a cohesive interaction region. If separation is outside of the interaction
region, the cohesive traction is equal to zero.

The PPR potential-based model satisfies the following boundary conditions associated with cohesive fracture.

� The complete normal separation occurs (Tn = 0) when either normal or tangential separation reaches a certain length
scale,
Tnðdn;DtÞ ¼ 0; TnðDn; �dtÞ ¼ 0; ð13Þ
where dn is a normal final crack opening width, and �dt is a tangential conjugate final crack opening width.
� Similarly, the complete tangential separation occurs (Tt = 0) when either normal or tangential separation reaches a certain

length scale,



Fig. 2.
(�dn , �dt).

K. Park, G.H. Paulino / Engineering Fracture Mechanics 93 (2012) 239–262 243
Ttð �dn;DtÞ ¼ 0; TtðDn; dtÞ ¼ 0: ð14Þ
where �dn is a normal conjugate final crack opening width, and dt is a tangential final crack opening width.
� The area under the pure normal and tangential traction–separation curves provides the fracture energy in the normal (/n)

and tangential (/t) directions, respectively,
/n ¼
Z dn

0
TnðDn;0ÞdDn; /t ¼

Z dt

0
Ttð0;DtÞdDt : ð15Þ
� The traction–separation curves reach a peak point at a critical crack opening width (dnc, dtc),
@Tn

@Dn

����
Dn¼dnc

¼ 0;
@Tt

@Dt

����
Dt¼dtc

¼ 0: ð16Þ
Notice that the smaller value of the critical crack opening width results in the higher initial slope in the intrinsic traction–
separation relationship. The limit of the critical crack opening widths in the PPR potential (dnc ? 0 and dtc ? 0) leads to
the traction–separation relationship for the extrinsic cohesive zone model.
� The traction value at the critical separation corresponds to the cohesive strength (rmax, smax),
Tnðdnc;0Þ ¼ rmax; Ttð0; dtcÞ ¼ smax: ð17Þ
� The shape parameters (a, b) are introduced in order to represent various material softening responses. When the shape
parameters are smaller than two, the cohesive traction–separation relationship illustrates the concave shape (e.g. pla-
teau-type). If a,b� 2, the relation is the convex shape, which can be applicable for typical quasi-brittle materials.

Based on proper boundary conditions, the characteristic parameters (dn, dt; Cn, Ct; m, n; a, b) in the PPR potential are
determined. The energy constants Cn and Ct are related to the fracture energies (e.g. modes I and II). When the modes I
and II fracture energies are different, one obtains the energy constants
Cn ¼ ð�/nÞ
h/n�/t i
/n�/t

a
m

� 	m

; Ct ¼ ð�/tÞ
h/t�/n i
/t�/n

b
n

� �n

for ð/n – /tÞ: ð18Þ
If the modes I and II fracture energies are the same, the energy constants are simplified as
Cn ¼ �/n
a
m

� 	m

; Ct ¼
b
n

� �n

for ð/n ¼ /tÞ: ð19Þ
The exponents m and n are associated with the initial slope (i.e. artificial compliance),
m ¼ aða� 1Þk2
n

ð1� ak2
nÞ
; n ¼ bðb� 1Þk2

t

ð1� bk2
t Þ
: ð20Þ
where kn and kt are initial slope indicators, which are the ratio of the critical crack opening width to the final crack opening
width, i.e. (kn ¼ dnc=dn, kt ¼ dtc=dt). The normal final crack opening width (dn) is given as
dn ¼
/n

rmax
aknð1� knÞa�1 a

m
þ 1

� 	 a
m

kn þ 1
� 	m�1

ð21Þ
while the tangential final crack opening width (dt) is expressed as
dt ¼
/t

smax
bktð1� ktÞb�1 b

n
þ 1

� �
b
n

kt þ 1
� �n�1

: ð22Þ
(a) (b)
Description of each cohesive interaction (Tn, Tt) region defined by the final crack opening widths (dn, dt) and the conjugate final crack opening widths
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The cohesive interaction (or softening) region is defined in a rectangular domain, as shown in Fig. 2. The normal cohesive
interaction region is determined by the first boundary condition (Eq. (13)), which provides two length scales: the normal
final crack opening width (dn) and the conjugate tangential final crack opening width ð�dtÞ. When normal separation (Dn)
is greater than dn or when the absolute of tangential separation is greater than �dt , the normal cohesive traction is set to
be zero. As a result, the normal softening region is a rectangular domain where 0 6Dn 6 dn and jDt j 6 �dt . The tangential con-
jugate final crack opening width ðDt ¼ �dtÞ is the solution of the following nonlinear function,
Fig. 3.
the nor
ftðDtÞ ¼ Ct 1� Dt

dt

� �b n
b
þ Dt

dt

� �n

þ h/t � /ni ¼ 0: ð23Þ
The solution ð�dtÞ is unique between 0 and dt. Similarly, the second boundary condition (Eq. (14)) defines the tangential cohe-
sive interaction region, i.e. 0 6 Dn 6

�dn and jDtj 6 dt. The tangential cohesive traction is equal to zero when Dn P �dn or
jDtjP dt. The normal conjugate final crack opening width ðDn ¼ �dnÞ is the solution of the nonlinear function,
fnðDnÞ ¼ Cn 1� Dn

dn

� �a m
a
þ Dn

dn

� �m

þ h/n � /ti ¼ 0: ð24Þ
The solution ð�dnÞ is unique between 0 and dn.
The normal cohesive interaction (Tn) is plotted in Fig. 3a with /n = 100 N/m, /t = 200 N/m, rmax = 40 MPa, smax = 30 MPa,

a = 5, b = 1.3, kn = 0.1, and kt = 0.2. When the tangential separation is equal to zero, the normal traction reaches the cohesive
strength at Dn = 0.1dn, then decreases to zero as Dn goes to dn, which corresponds to the mode I traction–separation relation-
(a)

(b)
(a) Normal cohesive traction with respect to the increase of the tangential separation; (b) tangential cohesive traction with respect to the increase of
mal separation.



Fig. 4. PPR potential and its gradients for the intrinsic cohesive zone model with /n = 100 N/m, /t = 200 N/m, rmax = 40 MPa, smax = 30 MPa, a = 5, b = 1.3,
kn = 0.1, and kt = 0.2.
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ship. The increase of the tangential separation from zero to the conjugate final crack opening width ð�dtÞ leads to the mono-
tonic decrease of the normal cohesive interaction. When Dt is equal to �dt , the normal traction is equal to zero, i.e.
TnðDn; �dtÞ ¼ 0. Thus, either Dn P dn or jDtjP �dt results in the complete normal failure condition. Fig. 3b describes the tangen-
tial cohesive traction (Tt) with respect to the normal and tangential separations. The tangential traction reaches the peak
point when the tangential separation corresponds to the critical separation (i.e. Dt = 0.2dt). The tangential traction monoton-
ically decreases with respect to the increase of normal and tangential separations. The tangential traction becomes zero
when the tangential separation is greater than or equal to the tangential final crack opening width (dt) or when the normal
separation is greater than or equal to the normal conjugate final crack opening width ð�dnÞ.

The PPR potential and its gradients are plotted in the positive softening region, shown in Fig. 4. The fracture parameters
are the same as the parameters used in Fig. 3. The normal cohesive traction illustrates the convex shape while the tangential
cohesive traction describes the concave shape, as expected. In addition, the PPR model can be plotted by using a graphical
user interface (GUI)1.

2.3. Unloading/reloading relationship

The dissipation of the fracture energy is associated with unloading and reloading. Thus, unloading/reloading relations are
independent of the PPR potential. For simplicity, the following unloading/reloading relationship [1] is provided
1 A so
Tt
nðDn;DtÞ ¼ TnðDnmax ;DtÞ

Dn

Dnmax

� �at

; Tt
t ðDn;DtÞ ¼ TtðDn;DtmaxÞ

jDt j
Dtmax

� �bt Dt

jDt j
; ð25Þ
where Dnmax is the maximum normal separation in a loading history, while Dtmax is the maximum absolute of tangential sep-
aration in a loading history. The normal and tangential cohesive tractions of the unloading/reloading model are illustrated by
black solids in Fig. 5, as an example. Additionally, TnðDnmax ;DtÞ and TtðDn;Dtmax Þ, e.g. gray solids in Fig. 5, correspond to the
cohesive tractions along the boundary between the softening condition and the unloading/reloading condition. Unload-
ing/reloading shape parameters (at, bt) are introduced to describe various unloading/reloading relations. If at and bt are
equal to one, the traction–separation relation is linear to the origin. When the shape parameter is smaller than 1, it demon-
strates the concave shape. When at, bt > 1, it shows the convex shape.

The unloading/reloading condition is defined on the basis of the normal and tangential separation history. If the current
normal separation is greater than Dnmax , the current separation state is normal softening (i.e. follows Eq. (12)). When
urce code written in MATLAB can be found in http://paulino.cee.illinois.edu/education_resources/PPR/GUI.rar

http://paulino.cee.illinois.edu/education_resources/PPR/GUI.rar


(a) (b)
Fig. 6. Two-dimensional linear cohesive element and nodal displacements in (a) the global coordinates and (b) the local coordinates.

(a) (b)
Fig. 5. Schematics of the unloading/reloading model: (a) normal interaction Tt

n


 �
and (b) tangential interaction Tt

t


 �
.
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0 < Dn < Dnmax , the current separation state is unloading/reloading, and thus the normal cohesive traction is obtained from
the unloading/reloading relationship (i.e. Eq. (25)). Similarly, when the current tangential separation is greater than Dtmax , the
current separation state demonstrates tangential softening. If jDtj < Dtmax , the tangential cohesive traction is evaluated on the
basis of the unloading/reloading relationship. Then, the unloading/reloading condition for the normal cohesive traction is
uncoupled with respect to the unloading/reloading condition for the tangential cohesive traction. Notice that it is possible
that the normal cohesive traction demonstrates softening condition while the tangential traction displays unloading/reload-
ing condition. Alternatively, one can employ other unloading/reloading relationships [28,1] in conjunction with the PPR
potential.
3. Computational implementation

A finite element-based intrinsic cohesive zone model is implemented as a UEL subroutine in ABAQUS. The subroutine for
a two-dimensional linear cohesive element with the PPR potential-based model is provided in Appendix, as an example. In
the subroutine, nodal coordinates (COORDS), nodal displacements in the global coordinates (U), and material parameters de-
fined in an input file (PROPS) are available, while the right-hand-side vector (RHS) and the Jacobian matrix (AMATRX) of a
cohesive element need to be defined. In addition, state dependent variables (SVARS) can be updated at the end of a nonlinear
iteration. In the current implementation, nine input parameters are needed, i.e. normal fracture energy (/n), tangential frac-
ture energy (/t), normal cohesive strength (rmax), tangential cohesive strength (smax), normal shape parameter (a), tangen-
tial shape parameter (b), normal initial slope indicator (kn), tangential initial slope indicator (kt), and thickness of a cohesive
element along the out-of-plane direction. The right-hand-side vector (RHS) is minus of the internal cohesive force vector, i.e.
�fcoh, while the Jacobian matrix (AMATRX) corresponds to the tangent matrix of a cohesive element, i.e. Kcoh. In the state
dependent variables (SVARS), the maximum normal and tangential separations at each integration point are stored. The
two-point Gauss quadrature rule is employed, and thus four state variables are stored at the end of nonlinear iteration. In
addition, the unloading/reloading relation is assumed to be linear towards the origin. The two-dimensional linear cohesive
element formulation is illustrated in the following subsection. The cohesive traction vector and the tangent matrix are eval-
uated on the basis of the PPR potential-based model in conjunction with the cohesive interaction region.
3.1. Two-dimensional linear cohesive element

A two-dimensional linear cohesive element consists of four nodes, and each node has two degrees of freedom. Thus, a
cohesive element has eight global nodal displacement quantities (�u1, �u2, �u3, �u4, �u5, �u6, �u7, �u8), as shown in Fig. 6a. These global
quantities are transformed into local nodal displacement quantities (~u1, ~u2, ~u3, ~u4, ~u5, ~u6, ~u7, ~u8) by the rotational matrix, R
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R ¼

K 0 0 0
0 K 0 0
0 0 K 0
0 0 0 K

26664
37775 ð26Þ
where the two-dimensional transformation matrix (K) is given as:
K ¼
cos h sin h

� sin h cos h

� �
: ð27Þ
Note that h is the angle between the global coordinates and the local coordinates. In the current computational implemen-
tation, the order of the nodes of a cohesive element is counter clockwise, and the node numbering starts from the lower left
node of a cohesive element in the transformed configuration, as shown in Fig. 6b.

Then, the nodal normal separation and tangential separation at the end of a cohesive element (eD1, eD2, eD3, eD4) can be ob-
tained from the local nodal displacement as follows,
eD1 ¼ ~u7 � ~u1; eD2 ¼ ~u8 � ~u2; eD3 ¼ ~u5 � ~u3; eD4 ¼ ~u6 � ~u4: ð28Þ
Based on the above relations, the local displacement–separation relation matrix (L) is given as
L ¼

�1 0 0 0 0 0 1 0
0 �1 0 0 0 0 0 1
0 0 �1 0 1 0 0 0
0 0 0 �1 0 1 0 0

26664
37775: ð29Þ
The separation along the cohesive element is obtained from the nodal separation quantities in conjunction with the shape
functional matrix (N),
N ¼
N1 0 N2 0
0 N1 0 N2

� �
ð30Þ
where the linear shape functions in the natural coordinate (n) are given as
N1 ¼
1� n

2
; N2 ¼

1þ n
2

: ð31Þ
From Eqs. (26)–(30), the global displacement–separation relation matrix (Bc) is expressed as
Bc ¼
�CN1 �SN1 �CN2 �SN2 CN2 SN2 CN1 SN1

SN1 �CN1 SN2 �CN2 �SN2 CN2 �SN1 CN1

� �
ð32Þ
where C and S denote cosh and sinh, respectively. Finally, the internal cohesive force vector (Eq. (8)) and the tangent matrix
(Eq. (9)) are computed by using a numerical integration scheme (e.g. Gauss quadrature).

3.2. Determination of cohesive interaction region

The cohesive interaction (softening) region is associated with the length scales: the final crack opening widths (dn, dt) and
the conjugate final crack opening widths (�dn, �dt). The softening region of the normal cohesive traction is defined as
0 6Dn 6 dn and ��dt 6 Dt 6

�dt while the softening region of the tangential cohesive traction is defined as 0 6 Dn 6
�dn and

�dt 6Dt 6 dt. For the intrinsic cohesive zone model, the normal and tangential final crack opening widths are determined
by the closed form (Eqs. (21) and (22)), while the conjugate final crack opening widths are calculated by solving the nonlin-
ear equations (Eqs. (23) and (24)). The nonlinear equations can be solved by a root-finding algorithm, such as the Bisection
method or the Newton–Raphson method.

Alternatively, the softening region can be defined without solving the nonlinear equation. The necessary and sufficient
conditions of ð��dt 6 Dt 6

�dtÞ, associated with the normal softening region, are ((�dt 6 Dt 6 dt) & (Tn(Dn, Dt) P 0)). This is be-
cause the tangential conjugate final crack opening width ð�dtÞ is unique between zero and the tangential final crack opening
width (dt) and because the normal cohesive traction is always positive within the normal softening region. Similarly, one can
replace ð0 6 Dn 6

�dnÞ by ((0 6 Dn 6 dn) & (Tt(Dn, Dt) P 0)) because �dn is unique between 0 and dn, and because the tangential
traction is positive within the tangential softening region. Notice that this alternative approach is employed in the UEL sub-
routine provided in Appendix.

3.3. Cohesive traction vector and tangent matrix

The cohesive traction vector and the material tangent stiffness matrix are evaluated by accounting for four cases: soften-
ing, unloading/reloading, contact and complete failure conditions. Algorithm 1 outlines the evaluation of the cohesive trac-
tion vector (Tc) and tangent matrix (Dc) with respect to the four cases. Notice that the normal and tangential cohesive
interactions are evaluated independently.
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Algorithm 1. Evaluation of the cohesive traction vector and tangent matrix based on the four conditions: softening,
unloading/reloading, contact and complete failure.

// Normal cohesive interaction:
if (Dn 6 0) then {Contact}

Tn = DnnDn, Dnn = ap, Dnt = 0

else if (0 6 Dn 6 dn and jDt j 6 �dt and Dn P Dnmax Þ then {Softening}

Tn ¼ @WðDn ;DtÞ
@Dn

; Dnt ¼ @2WðDn ;DtÞ
@D2

n
; Dnt ¼ @2WðDn ;DtÞ

@Dn@Dt

else if (0 6 Dn 6 dn and jDt j 6 �dt and Dn < Dnmax ) then {Unloading/reloading}

Tn ¼ Tt
nðDn;DtÞ; Dnn ¼ @Tt

nðDn ;DtÞ
@Dn

; Dnt ¼ @Tt
nðDn ;DtÞ
@Dt

else if (Dn > dn or jDt j > �dt) then {Complete failure}
Tn = 0, Dnn = 0, Dnt = 0

end if

// Tangential cohesive interaction:
if (Dn 6 0) then {Contact}

Dn = 0
end if

if (0 6 Dn 6
�dn and jDtj 6 dt and jDt jP Dtmax ) then {Softening}

Tt ¼ @WðDn ;DtÞ
@Dt

; Dtn ¼ @2WðDn ;DtÞ
@DtDn

; Dtt ¼ @2WðDn ;DtÞ
@D2

t

else if (0 6 Dn 6
�dn and jDtj 6 dt and jDtj < Dtmax ) then {Unloading/reloading}

Tt ¼ Tt
t ðDn;DtÞ; Dtn ¼ @Tt

t ðDn ;DtÞ
@Dn

; Dtt ¼ @Tt
t ðDn ;DtÞ
@Dt

else if ((Dn > �dn) or (jDtj > dt)) then {Complete failure}
Tt = 0, Dtn = 0, Dtt = 0

end if

First, when separations are within the cohesive interaction region and when the current separation is greater than the
maximum separation in a loading history, the current state of separation follows the softening condition. Thus, the constitu-
tive relationship is derived from the PPR potential. If both normal and tangential separations are in the softening condition,
the cohesive tractions are evaluated by taking the derivatives of the PPR potential,
TcðDn;DtÞ ¼
@W=@Dt

@W=@Dn

� �
¼

TtðDn;DtÞ
TnðDn;DtÞ

� �
; ð33Þ
as shown in Eq. (12). The second derivatives of the PPR potential lead to the material tangent stiffness matrix,
DcðDn;DtÞ ¼
Dtt Dtn

Dnt Dnn

� �
¼

@2W=@D2
t @2W=@Dt@Dn

@2W=@Dn@Dt @2W=@D2
n

" #
; ð34Þ
where the components of the matrix are given as
Dnn ¼
Cn

d2
n

ðm2 �mÞ 1� Dn

dn

� �a m
a
þ Dn

dn

� �m�2

þ ða2 � aÞ 1� Dn

dn

� �a�2 m
a
þ Dn

dn

� �m
"

�2am 1� Dn

dn

� �a�1 m
a
þ Dn

dn

� �m�1
#

Ct 1� jDt j
dt

� �b n
b
þ jDt j

dt

� �n

þ h/t � /ni
" #

;

Dnt ¼
CnCt

dndt
m 1� Dn

dn

� �a m
a
þ Dn

dn

� �m�1

� a 1� Dn

dn

� �a�1 m
a
þ Dn

dn

� �m
" #

n 1� jDtj
dt

� �b n
b
þ jDtj

dt

� �n�1

� b 1� jDt j
dt

� �b�1 n
b
þ jDt j

dt

� �n
" #

Dt

jDtj
;

Dtn ¼ Dnt;

Dtt ¼
Ct

d2
t

ðn2 � nÞ 1� jDt j
dt

� �b n
b
þ jDtj

dt

� �n�2

þ ðb2 � bÞ 1� jDt j
dt

� �b�2 n
b
þ jDt j

dt

� �n
"

�2bn 1� jDtj
dt

� �b�1 n
b
þ jDtj

dt

� �n�1
#

Cn 1� Dn

dn

� �a m
a
þ Dn

dn

� �m

þ h/n � /ti
� �

: ð35Þ
In this case, as expected, one obtains the symmetric tangent stiffness matrix.
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Next, when separations are within the cohesive interaction region and when the current separation is smaller than the
maximum separation, the current state corresponds to the unloading/reloading condition. Then, the cohesive traction is ob-
tained from the unloading/reloading model (Eq. (25)), and its Jacobian matrix is given by
DcðDn;DtÞ ¼
Dt

tt Dt
tn

Dt
nt Dt

nn

" #
¼

@Tt
t =@Dt @Tt

t =@Dn

@Tt
n=@Dt @Tt

n=@Dn

" #
ð36Þ
where the entries are expressed as
Dt
nn ¼ TnðDnmax ;DtÞ

at

Dnmax

Dn

Dnmax

� �at�1

Dt
nt ¼ DntðDnmax ;DtÞ

Dn

Dnmax

� �at

Dt
tn ¼ DtnðDn;DtmaxÞ

jDtj
Dtmax

� �bt

Dt
tt ¼ TtðDn;DtmaxÞ

bt

Dtmax

jDt j
Dtmax

� �bt�1

: ð37Þ
In this case, the symmetric system is not guaranteed because the unloading/reloading model is not derived from a potential.
The contact condition occurs when the normal separation is negative. In this case, the normal negative separation can be

penalized to prevent from material self-penetration. For example, the normal cohesive interaction is calibrated using the
penalty stiffness (ap), i.e. Tn = apDn. In this study, ap is selected as the stiffness at the zero separation, i.e.
ap ¼
@2WðDn;DtÞ

@D2
n

�����
Dn¼0; Dt¼0

: ð38Þ
The tangential cohesive interaction is evaluated by penalizing Dn = 0 (see Algorithm 1). Alternative approaches, involving
contact mechanics, may also be applicable.

Finally, material locally experiences complete failure when separations are outside of the cohesive interaction region. The
normal cohesive traction and normal stiffness matrix entries are set to be zero either when normal separation is greater than
the normal final crack opening width (Dn > dn), or when the absolute value of tangential separation is greater than the tan-
gential conjugate final crack opening width ðjDt j > �dtÞ. Notice that the normal cohesive interaction is continuous (i.e. no trun-
cation) along the boundary of the normal interaction region (i.e. Dn = dn and jDtj ¼ �dt), because the normal cohesive
interaction satisfies the boundary conditions of (Tn(dn, Dt) = 0 and TnðDn; �dtÞ ¼ 0). Similarly, the tangential cohesive interac-
tion and tangential stiffness matrix entries are equal to zero when either Dn > �dn or jDtj > dt. The tangential cohesive inter-
action is continuous along the boundary of the tangential softening region (i.e. Dn ¼ �dn and jDtj = dt), because the tangential
cohesive interaction satisfies the boundary conditions of (Ttð�dn;DtÞ ¼ 0 and Tt(Dn, dt) = 0).

4. Examples

For the intrinsic cohesive zone modeling approach, cohesive surface elements are inserted in a potential crack propaga-
tion region before computational simulation. Then, cohesive elements and their material properties are defined in an ABA-
QUS input file to simulate example problems. For instance, cohesive elements are declared by means of ⁄USER ELEMENT

command, e.g.

⁄USER ELEMENT, TYPE = U1, NODES = 4, COORDINATES = 2, PROPERTIES = 9, VARIABLES = 4

1, 2
Note that TYPE indicates the name of the element type (e.g. U1), NODES is the number of nodes, COORDINATES is the largest
active degree of freedom, PROPERTIES is the number of the input parameters (PROPS), and VARIABLES is the number of the
solution dependent variables (SVARS). Then, active degrees of freedom are listed below, i.e. 1, 2, which corresponds to hor-
izontal and vertical displacements. For the given element type (e.g. U1), element connectivities are provided as follows:

⁄ELEMENT, TYPE = U1, ELSET = COH_ELE
101, 1, 2, 3, 4
where ELSET is the name of element set (e.g. COH_ELE) to which these elements will be assigned. For the given element set
(e.g. COH_ELE), the input parameters (PROPS) are defined as follows:

⁄UEL PROPERTY, ELSET = COH_ELE
100, 200, 4e6, 3e6, 5, 1.6, 0.005, 0.005,

0.01



where input parameters are provided as an example. Nine parameters are required, and listed as the following orders: /n, /t,
r , s , a, b, k , k , and thickness along the out-of-plane direction. After generating an input file, one can execute an anal-
max max n t

ysis in conjunction with the UEL subroutine through the following command, i.e.

abaqus job = input_file_name user = UEL_file_name
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More detailed information associated with an ABAQUS input file and its execution can be found in the ABAQUS/standard
user’s manual [16].

In order to verify the UEL subroutine, three computational examples are provided: patch test, mixed-mode bending test,
and matrix/particle debonding. For patch tests, simple mode-I and mode-II tests are simulated, which display constant stress
state within continuum (or bulk) elements. In addition, mixed-mode bending and matrix/particle debonding examples are
investigated by comparing computational results to analytical solutions.

4.1. Patch test: mode-I and mode-II

In order to verify computational implementation, simple modes I and II problems are first introduced. The geometry of
modes I and II problems is described in Fig. 7. The elastic modulus is 32 GPa, and the Poisson’s ratio is 0.2. The fracture
parameters of the PPR model are given as /n = 100 N/m, /t = 200 N/m, rmax = 4 MPa, smax = 3 MPa, a = 5, b = 1.6,kn = 0.005,
and kt = 0.005. The unloading/reloading relation is assumed to be linear to the origin, as indicated previously.

For a mode I test, a square plate (0.1 m � 0.1 m) is elongated at the top under the displacement control up to 0.03 mm.
Next, the plate is compressed until the displacement at the top is �0.01 mm, and is elongated again to demonstrate complete
failure condition. The plate is discretized by a bilinear quadrilateral element (Q4), and a cohesive element is inserted at the
bottom of the plate (see Fig. 7a). The stress versus displacement relation is plotted in Fig. 8a. While the plate is elongated,
stress initially increases up to the cohesive strength (rmax), and then the plate demonstrates softening behavior. The soften-
ing curve is convex because the mode I shape parameter is greater than 2 (i.e. a = 5). When the plate is unloaded, the cohe-
sive traction is evaluated on the basis of the linear unloading/reloading relationship.

For a mode II problem, a 0.1 m by 0.1 m plate is elongated and compressed at the top and right hand sides up to 0.04 mm.
Then, the displacements are applied along the opposite directions up to�0.05 mm, and are reversed again until the complete
failure. In this case, the principal stresses are along the horizontal and vertical directions, and the maximum shear stress
occurs along the 45�. The magnitude of the maximum shear stress is equal to the magnitude of the principal stresses. The
plate is discretized by two linear triangular elements (T3), and a cohesive element is inserted along the diagonal direction
(see Fig. 7b). Fig. 8b illustrates that the maximum shear stress reaches the cohesive strength, and the softening curve is con-
cave because the mode II shape parameter (b) less than two. Then, the plate is linearly unloaded and reloaded, while the
applied displacement changes from 0.04 mm to �0.04 mm, and from 0.05 mm to �0.05 mm. Finally, the increase of the ap-
plied displacement leads to softening and complete failure conditions.

4.2. Mixed-mode bending analysis

Mixed-mode bending tests are employed to estimate the fracture energy under mixed mode conditions [29]. Note that
the problem is considered in Ref [15]. The geometry of the test is shown in Fig. 9. For the test configuration, the analytical
solution is available, which consists of three parts based on the linear beam theory (one part) and linear elastic fracture
mechanics (two parts) [30]. The domain is discretized with bilinear quadrilateral elements (Q4), and cohesive elements
are inserted along the horizontal direction, which corresponds to the potential crack path, i.e. the intrinsic cohesive zone
model. The number of bilinear quadrilateral elements is 19,570 while the number of cohesive elements is 683. The material
properties are arbitrarily selected. The elastic modulus and the Poisson’s ratio are 122 GPa and 0.25, respectively. Force
boundary conditions are applied where a rigid lever is located, while displacement boundary conditions are employed where
the beam is supported. Additionally, a modified Riks method [31,16] is utilized to capture post-peak load behavior.
(a) (b)
Fig. 7. Geometry of (a) mode I test, and (b) mode II test.



Fig. 9. Geometry of the mixed-mode bending test.

(a)

(b)
Fig. 8. Computational results: (a) mode I test, and (b) mode II test.
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In this study, two cases are tested. One is that the mode I fracture energy is the same as the mode II fracture energy (e.g.
/n = /t = 500 N/m). The other is that the mode I fracture energy is different from the mode II fracture energy (e.g. /n = 500 N/m,
/t = 1000 N/m). The shape parameter (a,b) is 3, and the initial slope indicator (kn,kt) is 0.02 for both cases. For the same fracture
energy, the computational results obtained with various cohesive strengths (rmax, smax) are illustrated in Fig. 10a. The increase



(a)

(b)
Fig. 10. Comparison between the analytical solutions and the computational results: (a) /n = /t = 500 N/m, and (b) /n = 500 N/m, /t = 1000 N/m.

Fig. 11. Unit cell with a cylindrical particle under equi-biaxial tension stress state.
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of the cohesive strength leads to more brittle failure behavior, and thus demonstrates the convergence to the analytical solutions.
For the case of different fracture energies, the normal cohesive strength is fixed as 20 MPa while the tangential cohesive strength
changes from 100 MPa to 500 MPa. Similarly, the computational results converges to the analytical solutions while the tangential
cohesive strength (smax) increases, as shown in Fig. 10b.

4.3. Multiscale analysis through matrix/particle debonding

Matrix/particle debonding process is analyzed, and computational results are compared with the results obtained from a
micro-mechanics approach. In this study, one assumes that all particles are isotropic, and have the same elastic modulus and
particle size. The shape of a unit cell are a regular hexahedron with a cylindrical particle, as illustrated in Fig. 11. Boundary
conditions of a unit cell are idealized as the equibiaxial tension under plane strain condition. The particle volume fraction (f)
is associated with the unit cell size and the radius of particle (ap). Based on the extended Mori–Tanaka method [32,13], the
macroscopic strain ð��Þ and the macroscopic stress ð�rÞ are given as:
�� ¼ ð1þ mmÞð1� 2mmÞ
Em �rþ f

ð1þ mpÞð1� 2mpÞ
Ep � ð1þ mmÞð1� 2mmÞ

Em

� �
�rp þ Dn

ap

� �
ð39Þ
Number of nodes: 7128
Number of volumetric elements (Q4): 6826
Number of cohesive elements: 200

(a)

(b)
Fig. 12. (a) Finite element mesh of the unit cell, and (b) Mises stress distribution for the case of rmax = 10 MPa.



Fig. 13. Macroscopic stress versus strain relations with respect to the change of the cohesive strength.
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and
�r ¼ ð1� f ÞEm

2ð1� mmÞð1þ mmÞ
ð1þ mpÞð1� 2mpÞ

Ep þ 1þ mm

Em

� �
�rp þ Dn

ap

� �
þ f �rp; ð40Þ
where Em and Ep are elastic modulus of matrix and particle, and mm and mp are Poisson’s ratio of matrix and particle, respec-
tively. In addition, the average stress in the particle ð�rpÞ is uniform, and thus equals to the normal cohesive traction at the
particle/matrix interface (Tn), which is related to the normal separation (Dn) in the PPR model.

The particle size (ap) is 2 cm, and the volume fraction (f) of the particle is 0.6. A quarter of the unit cell is analyzed because
of symmetry along the horizontal and vertical directions. The corresponding finite element mesh is illustrated in Fig. 12a,
and cohesive elements are inserted along the matrix/particle interface. The elastic modulus of particle (Ep) is 40 GPa while
the modulus of matrix (Em) is 20 GPa. Both particle and matrix have the same Poisson’s ratio, i.e. mp = mm = 0.25. The mode I
fracture parameters are assumed to be the same as the mode II fracture parameters. The fracture energy is 100 N/m, the
shape parameter is 3, and the initial slope indicator is 0.001. Three cases are tested by changing the cohesive strength,
i.e. rmax = 10 MPa, 8 MPa and 6 MPa. Fig. 12b illustrates the stress distribution after the peak load for the case of rmax = 10 M-
Pa. In addition, the macroscopic stress versus strain relations obtained from the finite element computation are compared
with the results from the extended Mori–Tanaka method, as shown in Fig. 13. The increase of the cohesive strength leads
to more brittle failure behavior, and increases the peak stress of the averaged macroscopic stress.

5. Concluding remarks

This paper presents the implementation of the PPR potential-based model in ABAQUS using a UEL subroutine. The imple-
mentation is based on the intrinsic cohesive zone modeling approach, which includes the initial elastic range in the traction–
separation relation. The input file format is provided for educational purposes. The UEL subroutine is provided in Appendix.
In the PPR potential-based model, the cohesive traction and its tangent matrix are evaluated by considering four conditions:
softening, unloading/reloading, contact and complete failure. The cohesive traction is obtained from the PPR potential for the
softening condition, while it is computed from the unloading/reloading model for the unloading/reloading condition. For the
contact condition, a penalty stiffness is introduced along the normal direction to prevent material interpenetration. The com-
plete failure condition is associated with the cohesive interaction region. The interaction region is defined within the final
crack opening width (dn, dt) and the conjugate final crack opening width (�dn, �dt) space. Note that dn and dt are explicitly com-
puted, while �dn and �dt can be computed by solving a nonlinear equation. Alternatively, rather than solving a nonlinear equa-
tion, the interaction region can be determined by checking the sign of the cohesive traction. Finally, three computational
examples are investigated to verify the present formulation: patch test, mixed-mode bending test, and matrix/particle deb-
onding. We have shown how to implement the PPR model in ABAQUS/Standard, which includes an implicit solution tech-
nique. We close this paper with a challenge for students interested in this line of research. We suggest that those
students implement the PPR model in ABAQUS/Explicit and explore simulations of cohesive elasto-dynamic fracture such
as those presented in reference [33].
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Appendix A2
2 The source code provided in this appendix can be downloaded from the urlhttp://paulino.cee.illinois.edu or http://k-park.yonsei.ac.kr
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