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Cohesive Zone Models: A Critical
Review of Traction-Separation
Relationships Across Fracture
Surfaces
One of the fundamental aspects in cohesive zone modeling is the definition of the
traction-separation relationship across fracture surfaces, which approximates the nonlin-
ear fracture process. Cohesive traction-separation relationships may be classified as
either nonpotential-based models or potential-based models. Potential-based models are
of special interest in the present review article. Several potential-based models display
limitations, especially for mixed-mode problems, because of the boundary conditions
associated with cohesive fracture. In addition, this paper shows that most effective
displacement-based models can be formulated under a single framework. These models
lead to positive stiffness under certain separation paths, contrary to general cohesive
fracture phenomena wherein the increase of separation generally results in the decrease
of failure resistance across the fracture surface (i.e., negative stiffness). To this end, the
constitutive relationship of mixed-mode cohesive fracture should be selected with great
caution. [DOI: 10.1115/1.4023110]
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1 Introduction

A fundamental issue in the simulation of cohesive failure mech-
anisms is the definition of cohesive interactions along fracture
surfaces. Cohesive interactions approximate progressive nonlinear
fracture behavior, named as the cohesive zone model (see Fig. 1).
Cohesive interactions are generally a function of displacement
jump (or separation). If the displacement jump is greater than a
characteristic length (dn), complete failure occurs (i.e., no load-
bearing capacity). Notice that the cohesive zone model is not
limited to modeling a single crack tip, but is also able to describe
crack nucleation and pervasive cracking through various time and
length scales.

The cohesive constitutive relationships can be classified as
either nonpotential-based models or potential-based models.
Nonpotential-based cohesive interaction models are relatively
simple to develop, because a symmetric system is not required
[1–3]. However, these models do not guarantee consistency of the
constitutive relationship for arbitrary mixed-mode conditions,
because they do not account for all possible separation paths.

For potential-based models, the traction-separation relation-
ships across fracture surfaces are obtained from a potential func-
tion, which characterizes the fracture behavior. Note that the
existence of a potential for the cohesive constitutive relationship
is addressed in conjunction with the non-negative work for closed
processes [1,2]. Due to the nature of a potential, the first derivative
of the fracture energy potential (W) provides the traction (cohesive
interactions) over fracture surfaces, and its second derivative pro-
vides the constitutive relationship (material tangent modulus).
Several potential-based models are available in the literature; such
as, models with specific polynomial orders [4,5], models with ex-
ponential expressions [6–9], and a model with general polyno-
mials [3]. Each model possesses advantages and limitations. The

present paper critically reviews traction-separation relationships
of cohesive fracture with an emphasis on potential-based constitu-
tive models.

There are generally required characteristics for cohesive consti-
tutive relationships, which are summarized as follows:

• The traction separation relationship is independent of any
superposed rigid body motion.

• The work to create a new surface is finite, and its value corre-
sponds to the fracture energy, i.e., area under a traction-
separation curve.

• The mode I fracture energy is usually different from the
mode II fracture energy.

• A finite characteristic length scale exists, which leads to a
complete failure condition, i.e., no load-bearing capacity.

• The cohesive traction across the fracture surface generally
decreases to zero while the separation increases under the
softening condition, which results in the negative stiffness.

• A potential for the cohesive constitutive relationship may
exist, and thus the energy dissipation associated with unload-
ing/reloading is independent of a potential.

The remainder of this paper is organized as follows. In the next
section, related works are briefly mentioned. Section 3 presents

Fig. 1 Schematics of the cohesive zone model
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one-dimensional effective displacement-based models and
illustrates that the models can be formulated under a single frame-
work. Section 4 provides a context on general potential-based
models, which are also discussed in the following sections.
Section 5 reviews potential-based models with specific polyno-
mial orders, while Sec. 6 discusses potential-based models with
exponential expressions. A unified potential-based model is
reviewed in Sec. 7. Finally, essential aspects of potential-based
cohesive zone models are summarized in Sec. 8.

2 Related Work

Cohesive zone models have been utilized to mitigate stress sin-
gularities in linear elastic fracture mechanics and to approximate
nonlinear material separation phenomena [10–14]. In this regard,
Elliott [15] conceived nonlinear material failure and introduced an
interatomic attracting force per unit area to investigate fracture of
a crystalline substance along a cleavage plane. Later, the concept
of the cohesive zone model was presented by Barenblatt [16,17]
to account for finite strength of brittle materials. Dugdale [18]
employed a similar cohesive zone model to investigate yielding at
a crack tip and size of the plastic zone. The cohesive traction
along the cohesive zone was assumed to be constant when the sep-
aration was smaller than a critical value. In these early works, the
cohesive zone model was introduced to account for nonlinear frac-
ture behavior, and the model was equivalent to the Griffith’s
energy balance concept [19] when the size of the cohesive zone
was small compared to crack-size and specimen geometry
[20,21].

The concept of the cohesive zone model has been widely
employed to investigate various material failure phenomena. For
elastic-plastic analysis of linear elastic cracked problems under
small scale yielding conditions, the plastic zone size has been
approximated for various configurations in conjunction with the
cohesive zone model [22–25]. In addition, by utilizing the
assumption that cohesive tractions exist along crack surfaces,
which are smoothly joined together [17], Keer [26] determined
the stress distribution within the framework of classical elasticity
theory. Based on Keer’s approach, Cribb and Tomkins [27]
obtained a cohesive force versus separation relationship, which
satisfies an assumed stress distribution at the crack tip of a per-
fectly brittle material. Later, Smith [28] developed a generalized
theory and provided a series of traction-separation relationships
based on simple expressions for displacements along the crack tip.

In order to consider a relatively large nonlinear fracture process
zone in quasi-brittle materials such as concrete, rocks and
fiber-reinforced concrete, the cohesive zone model (also called the
fictitious crack model) has been employed [29–33]. Hillerborg
et al. [29] introduced a linear softening model, which was defined
by the fracture energy and the tensile strength of concrete. Later,
bilinear softening models [32,34–37] were extensively utilized to
investigate concrete fracture and its size effect in conjunction with
two fracture energy quantities (i.e., initial fracture energy and total
fracture energy) [38–42]. In addition, the fracture process of fiber
reinforced concrete has been studied by considering two failure
mechanisms: one associated with plain concrete and the other
with fibers [43,44].

Crazing of polymers has been represented by using the cohesive
zone model [45]. The crazing process may consist of three stages:
initiation, widening and breakdown of fibrils [46]. Such micro-
structural craze response was approximated by a macroscopic
crack in conjunction with the concept of the cohesive zone model
[47,48]. A representative volume element, extracted from the
crazing process zone, was idealized as fibrils that are surrounded
by air, and a homogenized cohesive traction-separation relation-
ship was obtained [49]. Additionally, a relation between craze
failure and craze microstructural quantities was identified in
conjunction with molecular dynamics simulations, which led to a
connection between cohesive and molecular parameters [50,51].
The shape of the cohesive traction-separation curve of crazing in

glassy polymers was obtained by integrating electronic speckle
pattern interferometry and an analytical inverse technique [52].

The cohesive zone model has also been utilized to account for
the effect of microstructure on macroscopic response. Heterogene-
ities of a material were modeled by embedding cohesive interfa-
ces in a random mesh consisting of Voronoi cell elements
[53–55]. Additionally, intergranular cracking and matrix/particle
debonding within a representative volume element were described
by means of the cohesive traction-separation relations [9,56–59].
For example, effects of an interphase region on debonding were
investigated for a carbon nanotube reinforced polymer composite
[58]. Micromechanics and a finite element-based cohesive zone
model were integrated to study the constitutive relationship of
materials with microstructures [59].

Failure of functionally graded materials (FGM) has been inves-
tigated by several approaches [60]. Based on linear elastic fracture
mechanics, mixed boundary-value problems of FGMs have been
solved [61–64]. Alternatively, cohesive zone models have been
utilized to account for elastic-plastic cracks [65,66] including brit-
tle to ductile transition [67], thermal cracks [68], and dynamic
fracture [69,70]. For example, a phenomenological traction-based
cohesive zone model was proposed in conjunction with a volume
fraction approach for metal-ceramic FGMs [67,71]. A tailored
volume-fraction-based cohesive zone model, with some experi-
mental validation, was also developed for investigating fracture of
functionally graded fiber-reinforced concrete materials [44]. The
traction-based model was extended to a displacement-based cohe-
sive zone model in order to investigate J resistance behavior [72],
establishing a connection between cohesive zone and J-integral
for FGMs.

Furthermore, the cohesive zone model has been utilized to
investigate failure phenomena [73] associated with various time
and length scales, such as fatigue crack growth [74–78], bond-slip
in reinforced concrete [79–81], crack growth along adhesive bond
joints [82–85], microbranching instability [86–88], fragmentation
phenomena [89–91], etc.

During the progressive cohesive failure process, the amount of
dissipated energy per unit area generally depends on the mode-
mixity [12]. The variation of the fracture energy from mode I
and mode II was demonstrated by employing mixed-mode
fracture tests [92–95]. For example, Zhu et al. [95] obtained
traction-separation relationships for mode I and mode II fracture
of adhesives, and illustrated that the mode II fracture energy is
approximately two times greater than the mode I fracture energy.
Additionally, the concept of an anisotropic failure surface was
presented in order to account for mixed-mode failure in elastic
materials [45]. Thus, it is essential for the traction-separation rela-
tionship to capture different fracture energies with respect to the
mode-mixity.

Such cohesive failure investigations have been generally per-
formed in conjunction with computational techniques to approxi-
mate the nonlinear fracture process. For example, Hillerborg et al.
[29] combined the cohesive zone model with the finite element
method (FEM) for the analysis of quasi-brittle materials (e.g.,
concrete) through an equivalent nodal force corresponding to a
linear traction-separation relationship. Alternatively, cohesive sur-
face elements were introduced to describe material separation and
the traction-separation relationship [96,97]. One may embed cohe-
sive surface elements within the potential failure domain before
computational simulation, so-called the intrinsic cohesive zone
model [67,69,96]. On the other hand, cohesive surface elements
can be adaptively inserted during computational simulation when-
ever and wherever they are needed [87,97,98]. This approach is
known as the extrinsic cohesive zone model. Note that in order to
efficiently and effectively handle adaptive mesh modification, a
robust topology-based data structure is needed [99–102]. Instead
of utilizing surface elements, in generalized/extended finite ele-
ment methods (GFEM/XFEM) [103–105], a crack geometry can
be represented by discontinuous shape functions. Notice that the
representation of a three-dimensional arbitrary crack geometry
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with discontinuous shape functions is still a challenging research
area [55,106,107]. There are also other available computational
frameworks such as finite element with embedded strong disconti-
nuity [108–110], plasticity-based interface fracture models
[111–114], virtual internal bond methods [115–117], microplane
models [118–120], peridynamics [121–123], etc. Notice that the
choice of computational techniques is usually independent of the
choice of the constitutive relationship of cohesive fracture. How-
ever, if one employs the intrinsic cohesive zone model, an initial
elastic range is required for the constitutive relationship.

Cohesive traction-separation relationships may be obtained
by employing theoretical, experimental and computational
techniques. For example, based on the J-integral approach, a
traction-separation relation was obtained for double cantilever
beam specimens [124]. Inverse analyses were employed to cali-
brate a traction-separation relationship so that the best predicted
global load-displacement curve was achieved [125–127]. Based
on a measured local displacement field, digital image correlation
techniques and inverse analysis were employed to estimate frac-
ture parameters and determine traction-separation relationships
[52,128–130]. Additionally, macroscopic traction-separation
relationships were also obtained by considering microstructure in

conjunction with multiscale analysis [131–134]. The present
review paper focuses on cohesive traction-separation relation-
ships, which are expressed in closed form and are able to describe
general mixed-mode failure.

3 One-Dimensional Effective Displacement-Based

Models

Several constitutive relationships of the cohesive zone model
have been developed on the basis of an effective displacement (�D)
and an effective traction ( �T). The effective displacement and
traction easily define various cohesive relations such as cubic
polynomial [135], trapezoidal [136], smoothed trapezoidal [137],
exponential [98], linear softening [97,138,139] and bilinear soft-
ening [34,35] functions, as shown in Fig. 2. Note that the effective
traction is normalized with the cohesive strength (rmax) in Fig. 2.
Such one-dimensional effective displacement-traction relation-
ships are employed to investigate mixed-mode fracture problems,
and can be formulated within a single framework, which is essen-
tially based on the interpretation of a scaling parameter (called ae

below). Table 1 summarizes the models discussed within this
framework.

Tvergaard [135] introduced an effective displacement-based
model by relating the effective quantities ( �T, �D) to the normal and
tangential tractions, as follows:

Tn ¼
�Tð�DÞ

�D

Dn

dn
; Tt ¼

�Tð�DÞ
�D

ae
Dt

dt
(1)

where ae is a nondimensional constant associated with mode-
mixity, and dn and dt are normal and tangential characteristic
lengths associated with the fracture energy and the cohesive
strength. A nondimensional effective displacement (�D) is defined
as

�D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDn=dnÞ2 þ ðDt=dtÞ2

q
(2)

where Dn and Dt are normal and tangential separation variables,
respectively. An effective traction �Tð�DÞ defines the shape of the
traction-separation relation. Tvergaard [135] employed a cubic
polynomial function (Fig. 2(a)) for the effective traction ( �T), i.e.,

�Tð�DÞ ¼ 27

4
rmax

�Dð1� 2�Dþ �D2Þ (3)

that corresponds to the normal cohesive traction proposed by
Needleman [4], which is discussed later in this paper (see
Sec. 5.1). In addition, the normal cohesive traction (Tn) is the
same as �Tð�DÞ for the mode I case (Dt ¼ 0), while the tangential
cohesive traction (Tt) is identical to ae

�Tð�DÞ for the mode II case
(Dn ¼ 0), see Eq. (1). Thus, the nondimensional constant (ae) is a
scaling factor between tangential and normal cohesive tractions.

3.1 Model by Tvergaard and Hutchinson and its
Extensions. Equation (1) is able to represent other traction-
separation relationships by modifying the effective traction ( �T)
and the nondimensional constant (ae). For example, the one-
dimensional traction potential-based model by Tvergaard and
Hutchinson [136] is expressed as

Fig. 2 Effective traction-separation relationships: (a) cubic
polynomial, (b) trapezoidal, (c) smoothed trapezoidal, (d) expo-
nential, (e) linear softening, and (f) bilinear softening

Table 1 Framework for one-dimensional effective models based on Eq. (1)

Models ae Traction-separation relationship

Tvergaard [135] arbitrary (e.g., ae ¼ 1) Cubic polynomial
Tvergaard and Hutchinson [136] dn=dt Trapezoidal
Ortiz and Pandolfi [98] dn=dt Linear without the initial slope
Geubelle and Baylor [138] smax=rmax Linear with the initial slope
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W ¼ dn

ð �D

0

�Tð�dÞd�d (4)

The derivative of the potential (Eq. (4)) leads to the cohesive trac-
tion vector,

Tn ¼
@W

@�D

@�D
@Dn
¼

�Tð�DÞ
�D

Dn

dn
; Tt ¼

@W

@�D

@�D
@Dt
¼

�Tð�DÞ
�D

dn

dt

Dt

dt
(5)

which is a special case of Eq. (1) when the nondimensional con-
stant is given by

ae ¼
dn

dt
(6)

Note that the one-dimensional traction potential leads to the sym-
metric system, i.e., exact differential

@Tn

@Dt
¼ @Tt

@Dn
(7)

however, the model is unable to account for different fracture
energies along the normal and tangential directions [136].

Based on the one-dimensional traction potential-based model
(Eq. (4)), trapezoidal shape models (Fig. 2(b)) have been used
for elasto-plastic materials [136,140–142]. In order to provide
continuity in the derivative of the traction-separation relationship,
the trapezoidal shape is modified [137], as shown in Fig. 2(c).
Alternatively, the universal binding energy by Rose et al. [143]
was also employed for the one-dimensional traction potential-
based model (see Fig. 2(d)), which is given as

W ¼ dn

ð �D

0

ermax
�de

�dd�d ¼ ermaxdn 1� 1þ �D
� �

e�
�D

h i
(8)

The model has been used to investigate crack propagation of
C-300 steel [98], functionally graded materials [67,69], and
asphalt concrete [144].

3.2 Model by Ortiz and Pandolfi. Based on a free energy
density per unit area, Ortiz and Pandolfi [98] defined the cohesive
traction vector (T),

T ¼
eTðeDÞeD b2

eDt þ Dnnn

� �
(9)

where nn is a unit normal vector to a cohesive surface, and Dt is
an in-plane tangential separation vector. The above cohesive trac-
tion vector may be decomposed as

Tn ¼
eTðeDÞeD Dn; Tt ¼

eTðeDÞeD Dtb
2
e (10)

Note that the in-plane tangential separation vector (Dt) is equal
to Dtnt where nt is a unit in-plane tangential separation vector.

In addition, the effective displacement is defined as eD
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

n þ b2
eD

2
t

q
, which is dimensional (rather than nondimen-

sional) [97,98], where be is a nondimensional constant associated

with mode-mixity. Both �D and eD are equivalent, i.e.,

�D ¼ eD=dn when be ¼ dn=dt (11)

which, again, corresponds to the general format of Eq. (1) when
ae ¼ be. For the effective traction separation relationship, eTðeDÞ,
Camacho and Ortiz [97] employed a linear softening model,
which does not include the initial elastic range in the constitutive

relationship, leading to the so-called extrinsic cohesive zone
model. Ortiz and Pandolfi [98] indicated that in explicit calcula-
tions, a cohesive law of the linear softening model without the
initial elastic range is preferable to one of the exponential model
(i.e., Eq. (8)), as the initial elastic slope in the latter may place
stringent restrictions on the stable time step for explicit integra-
tions. The model was utilized to study dynamic fragmentation
[90] and microbranching instability [87].

3.3 Model by Geubelle and Baylor. The linear softening
model (Fig. 2(e)) by Geubelle and Baylor [138] is a special case
of Eq. (1). The normal and tangential tractions of the bilinear
cohesive traction model are originally given as

Tn ¼ rmax

Ds

1� Ds

Dn

dn
; Tt ¼ smax

Ds

1� Ds

Dt

dt
(12)

where rmax is the normal cohesive strength, and smax is the tangen-
tial cohesive strength. An internal residual strength variable (Ds) is
defined as Ds ¼ minðDmin;maxð0; 1� �DÞÞ, which controls com-
plete failure and unloading/reloading conditions. An internal vari-
able (Dmin) is related to the value of the effective displacement
when the cohesive traction reaches the cohesive strength. If �D is
smaller than ð1� DminÞ, the cohesive traction linearly increases
with respect to the increase of separation, which corresponds to the
artificial initial elastic range in the intrinsic model. For the soften-
ing condition (�D > 1� Dmin), the cohesive traction is expressed as

Tn ¼ rmax

1� �D
�D

Dn

dn
; Tt ¼ smax

1� �D
�D

Dt

dt
(13)

which corresponds to Eq. (1) when

�T ¼ rmaxð1� �DÞ; ae ¼ smax=rmax (14)

The model has been utilized for failure of polycrystalline brittle
materials [139] and viscoelastic asphalt concrete [145,146].

3.4 Extension to Three-Dimensional Problems. The one-
dimensional effective displacement model of Eq. (1) has also been
extended to investigate three-dimensional cohesive zone models
[98,147]. In this case, the effective displacement is defined as

�D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1=d1Þ2 þ ðD2=d2Þ2 þ ðD3=d3Þ2

q
(15)

where D1, D2, and D3 are separations, and d1, d2, and d3 are char-
acteristic lengths along the local coordinates, as shown in Fig. 3.

Fig. 3 Cohesive fracture separations along the local co-
ordinate system (a) two-dimensions (D1, D2) and (b) three-
dimensions (D1, D2, D3)
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Note that the subscript 1 denotes opening mode, while the sub-
scripts 2 and 3 indicate two in-plane shear modes. Accordingly,
the cohesive traction vector is defined as

T1 ¼
�Tð�DÞ

�D

D1

d1

; T2 ¼
�Tð�DÞ

�D
a2

D2

d2

; T3 ¼
�Tð�DÞ

�D
a3

D3

d3

(16)

where a2 and a3 are nondimensional constants associated with
mode-mixity.

3.5 Limitations of Effective Displacement-Based Models.
The previously discussed effective displacement-based models
possess certain limitations. Namely, they can provide positive
stiffness under softening condition. In other words, the cohesive
traction increases while the separation increases, which is gener-
ally an undesirable traction-separation relationship (unless the
material demonstrates stiffening behavior while separation
increases). This fact is demonstrated as follows. The derivative of
the normal traction (Eq. (1)) with respect to the normal separation
(Dn) leads to

@Tn

@Dn
¼ 1

dn
�D

�T þ Dn

dn
�D

� �2 @ �T

@�D
�D� �T

� �( )
(17)

Let us assume the effective traction ( �T) as a linearly decreasing
line, i.e., �T ¼ rmaxð1� �DÞ. The substitution of the linear effective
traction into Eq. (17) results in

@Tn

@Dn
¼ rmax

dn

1
�D

1� �D� Dn

dn
�D

� �2
( )

(18)

When Dt is zero (i.e., mode I), the stiffness of the normal cohesive
traction is �rmax=dn, as expected. However, when Dn is zero
(i.e., mode II), the stiffness of the normal cohesive traction is
dt=Dt � 1ð Þrmax=dn, which is greater than zero. Therefore, the

normal cohesive traction can increase while the normal or tangen-
tial separation increases. The normal cohesive traction and its
stiffness (Eq. (18)) are plotted in Fig. 4. One can clearly observe
the positive stiffness in Fig. 4(b).

The next weakness of the one-dimensional model (i.e., Eq. (4))
is that the fracture energy is constant regardless of the fracture
mode [136]. However, most materials have different fracture
energies with respect to the fracture mode [12] and display an ani-
sotropic failure surface [45], as discussed previously. Thus, the
model is limited with regards to mixed mode computation, espe-

cially when the mode I fracture energy is different from the mode
II fracture energy. Such issues associated with the positive stiff-
ness and the constant fracture energy cannot be tackled through
the computational implementation because the fracture energy
and the stiffness are an outcome of the traction-separation
relationship.

Finally, the effective displacement-based models are unable to
demonstrate the difference between the positive normal separation
and the negative normal separation because the effective displace-
ment is defined in terms of the square of the normal separation
and the square of the tangential separation. Thus, one may need to
introduce an additional traction-separation relation for the case of
negative normal separation. Otherwise, the model provides the
same amount of loss of cohesive traction regardless of the sign of
the normal separation.

4 General Potential-Based Models

As shown in the previous section, effective displacement-based
cohesive zone models have several limitations. Potential-based
models, the emphasis of this review article, have been developed
to circumvent some of those limitations. Cohesive traction-
separation relationships are created on the basis of a potential,
which is a function of normal and tangential separations (Dn, Dt)

instead of the effective displacement (�D). The derivative of a
potential with respect to the normal separation leads to the normal
cohesive traction while the derivative of a potential with respect
to the tangential separation results in the tangential cohesive trac-
tion. Notice that the cohesive traction obtained from potential-
based models represent monotonic material separation phenom-
ena. If one accounts for additional physical phenomena such as fa-
tigue loading, contact and frictional sliding along fracture surface,
oxide formation on fracture surface, etc., one may introduce addi-
tional constitutive relationships in conjunction with a potential-
based model.

Six general potential-based cohesive zone models are discussed
in this paper—see Table 2. The first two models [4,5] are based
on polynomial representations—see Sec. 5. The next three models
[7–9] are based on the concept of the universal binding energy by
Rose et al. [143]—see Sec. 6. In order to address limitations
of previous effective and general models, the so-called PPR
(Park–Paulino–Roesler) polynomial-based potential was formu-
lated. This model is presented separately in Sec. 7.

5 General Potential-Based Models With Polynomials

This section reviews two potential-based models: one by
Needleman [4] and the other by Freed and Banks-Sills [5], both of

Fig. 4 Effective displacement-based model with a linear softening: (a) normal cohesive
traction, and (b) its derivative with respect to the normal separation (Dn) for
�T 5 rmaxð1� �DÞ where /n 5 100 N/m and rmax 5 10 MPa
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which utilize cubic polynomials for the normal cohesive traction
and a linear function for the tangential cohesive traction. These
models are summarized in Table 2.

5.1 Cubic-Linear Potential-Based Model. An interfacial
debonding potential, which defines the constitutive relationship
along fracture interfaces, was introduced by Needleman [4]
and was utilized to investigate void nucleation and growth
[4,148–150]. The potential consists of polynomials formulated in
terms of a normal separation (Dn) and a tangential separation (Dt)
along the interface, i.e.,

WðDn;DtÞ ¼
27

4
rmaxdn

1

2

Dn

dn

� �2

1� 4

3

Dn

dn

� �
þ 1

2

Dn

dn

� �2
" #(

þ 1

2
as

Dt

dn

� �2

1� 2
Dn

dn

� �
þ Dn

dn

� �2
" #)

(19)

where rmax is the maximum traction carried by the interface under
the mode I fracture condition, dn is a characteristic length, and as

is a shear stiffness parameter. The interfacial normal and tangen-
tial tractions are obtained from the first derivatives of the potential

Tn ¼
@W
@Dn
¼ 27

4
rmax

�
Dn

dn

� �
1� 2

Dn

dn

� �
þ Dn

dn

� �2
" #

þ as
Dt

dn

� �2 Dn

dn

� �
� 1

� 	

Tt ¼
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@Dt
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4
rmax as

Dt

dn
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þ Dn

dn

� �2
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(20)

when normal separation is smaller than a characteristic length
scale (Dn < dn). If Dn is greater than dn, the cohesive interactions
are set to zero.

The interfacial normal traction reaches the cohesive strength
(rmax) when Dn ¼ dn=3 and Dt ¼ 0. Additionally, the area under
the normal traction-separation curve with Dt ¼ 0 is equal to the
mode I fracture energy (/n). The mode I fracture energy is related
to the characteristic length (dn) through the expression

/n ¼ 9rmaxdn=16 (21)

In addition, the higher the shear parameter as, the stiffer the
response along the tangential direction. Thus, the traction-
separation relationship shown in Eq. (20) is mainly associated
with mode I fracture properties, i.e., fracture energy and cohesive
strength.

Figure 5 illustrates the potential and its gradient with respect to
the separations (Dn, Dt) where /n ¼ 100 N/m, rmax ¼ 30 MPa,
and as¼ 10. The normal traction demonstrates elastic
behavior from Dn ¼ 0 to Dn ¼ dn=3, the maximum strength
(rmax ¼ 30 MPa) at Dn ¼ dn=3, and softening behavior from
Dn ¼ dn=3 to Dn ¼ dn. The tangential traction increases linearly
without bound as the tangential separation increases. Note that
large shear separation should eventually result in weakening of

the material behavior. Therefore, the model has limitations if a
relatively large shear separation develops [7].

5.2 Revisited Cubic-Linear Potential-Based Model.
Following the model by Needleman [4], Freed and Bank-Sills [5]
developed a potential-based model with cubic polynomials for the
application of bimaterial interfacial fracture. The potential-based
model is motivated by the fact that the critical interface energy
release rate is a function of mode-mixity or phase angle (h) [94].
Thus, the potential is derived as a function of an effective dis-

placement (eD) and a phase angle. The effective displacement (eD)
and phase angle (h) are defined as

eD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

n þ D2
t

q
; h ¼ tan�1 Dt

Dn
(22)

Freed and Bank-Sills [5] expressed the potential as

WðeD; hÞ ¼ 27

4
t�0ðhÞeD 1

4

eD
d�cðhÞ

 !3

� 2

3

eD
d�cðhÞ

 !2

þ 1

2

eD
d�cðhÞ

 !24 35
(23)

for eD � d�cðhÞ, where d�c and t�0 are given as

d�cðhÞ ¼ dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 h

p
; t�0ðhÞ ¼ rmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 h

p
(24)

If eD is greater than d�cðhÞ, the cohesive tractions are set to zero.
Note that t�0ðhÞ varies from rmax to infinity, and thus the potential
is unbounded when h ¼ p=2.

Alternatively, the potential of Eq. (23) can be expressed in
terms of Dn and Dt by substituting the effective displacement and
the phase angle (Eq. (22)) into the original potential expression
(Eq. (23)), which is given as

WðDn;DtÞ ¼
27

4
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dn
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� �2
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� �
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2

" #
(25)

Thus, the potential by Freed and Banks-Sills [5] is similar to the
earlier potential by Needleman [4]; cf. Eq. (25) and Eq. (19). Note
that both potentials are the same when Dt is zero (i.e., mode I
case), and that they are quadratic with respect to the tangential
separation. The normal and tangential cohesive tractions of the
model by Freed–Banks-Sills [5] are given as

Tn ¼
27

4
rmax

�
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� �
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dn
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�2
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dn
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þ 1

2

" #( )
(26)

Table 2 General potential-based models for cohesive fracture

Potential-based model Normal interaction Tangential interaction Universal binding energy

Needleman, 1987 [4] Cubic polynomial Linear N
Needleman, 1990 [7] Exponential Periodic Y
Beltz and Rice, 1991 [8] Exponential Periodic Y
Xu and Needleman, 1993 [9] Exponential Exponential Y
Freed and Banks-Sills, 2008 [5] Cubic polynomial Linear N
Park, Paulino and Roesler, 2009 [3] Polynomial Polynomial N

060802-6 / Vol. 64, NOVEMBER 2011 Transactions of the ASME

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 04/16/2013 Terms of Use: http://asme.org/terms



when eD is smaller than d�cðhÞ. Similarly to the model by
Needleman [4], the normal cohesive traction consists of cubic
polynomials with respect to the normal separation, while the tan-
gential cohesive traction is linear with respect to the tangential
separation. The characteristic length scale (dn) is obtained from
dn ¼ 16/n=9rmax, which corresponds to Eq. (21) of Needleman’s
model [4]. The potential and its gradient are plotted in Fig. 6 with
/n ¼ 100 N/m and rmax ¼ 30 MPa. The normal traction reaches
the cohesive strength when Dn ¼ dn=3 and Dt ¼ 0, while the tan-
gential traction is unbounded (no softening occurs), as in the
model by Needleman [4].

6 General Potential-Based Models With Universal

Binding Energy

Rose et al. [143] proposed an atomistic potential, which pro-
vides the relationship between metallic binding energies and lat-
tice parameters. The potential, called the universal binding
energy, is defined as

W ¼ �ð1þ ‘Þ expð�‘Þ (27)

where ‘ is the scaled separation associated with the
Thomas–Fermi screening length. The universal binding energy
has been extensively utilized to represent the work of interfacial
separation [6–9,98,151]. For instance, Rice and Wang [151] lim-
ited their investigation to large tangential separation and obtained
the normal traction-separation relationship on the basis of the de-
rivative of the potential given by Eq. (27),

TnðDnÞ ¼ E0

Dn

dn

� �
exp �an

Dn

dn

� �
(28)

where E0 is the initial modulus for one-dimensional tensile
straining of the interface layer, and the parameters dn and an are

associated with the fracture energy and the cohesive strength.
Needleman [6] utilized the exponential potential of Eq. (27) with
linear shear interaction, and obtained the following expression:

WðDn;DtÞ¼
9

16
rmaxdn 1� 1þ zDn

dn
�1

2
as

zDt

dn

� �2
" #

exp �zDn

dn

� �( )
(29)

where z ¼ 16e=9 and e ¼ expð1Þ. Notice that the potential
includes the term that agrees with the universal binding energy,
i.e., �ð1þ zDn=dnÞ expð�zDn=dnÞ, and that the tangential traction
(Tt ¼ @W=@Dt) is linear with respect to tangential separation, as it
was in the previous model by Needleman [4]; see Sec. 5. Ortiz
and Pandolfi [98] utilized the exponential expression for the
one-dimensional traction potential model based on the effective
displacement, as discussed in Sec. 3 (Eq. (8)). Furthermore,
Needleman [7] created an exponential-periodic potential, which is
a function of normal and tangential separations. Later, the
exponential-periodic potential was generalized by Beltz and Rice
[8]. The normal interaction has the exponential expression based
on the universal binding energy [143], while the tangential inter-
action employs the periodic function due to the periodic depend-
ence of the underlying lattice [152]. In order to consider the
complete shear failure, the exponential-exponential potential was
formulated by Xu and Needleman [9]. The following subsections
review three exponential potential-based cohesive models: the
exponential-periodic model [7], the generalized exponential-
periodic model [8], and the exponential-exponential model [9,96].

6.1 Exponential-Periodic Potential-Based Model. The
exponential–periodic potential by Needleman [7] accommodates a
large shear displacement jump—cf. Figs. 7 and 5. An exponential
expression was utilized for the normal traction-separation rela-
tionship to resemble the universal binding energy (Eq. (27)). A

Fig. 5 Needleman [4] potential (W) and its gradients (Tn, Tt ) with respect to displacement
separations (Dn, Dt ); /n 5 100 N/m, rmax 5 30 MPa, and as 5 10. The gradients refer to a
cubic-linear model.
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Fig. 6 Freed and Banks-Sills [5] potential (W) and its gradients (Tn, Tt ) with respect to
displacement separations (Dn, Dt ); /n 5 100 N/m, and rmax 5 30 MPa. The gradients refer
to a revisited cubic-linear model.

Fig. 7 Needleman [7] exponential-periodic potential and its gradients; /n 5 100 N/m, and
rmax 5 30 MPa
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periodic expression was employed for the tangential traction-
separation relationship because of the periodic dependence of the
underlying lattice. The exponential-periodic potential is given by

WðDn;DtÞ ¼
rmaxedn

z

�
1� 1þ zDn

dn
� bsz

2 1� cos
2pDt

dt

� �� 	� 	
� exp � zDn

dn

� �

(30)

where z ¼ 16e=9, and bs is a nondimensional constant. The deriv-
ative of the potential leads to the normal and tangential cohesive
tractions,

Tn ¼ rmaxe
zDn

dn
� bsz

2 1� cos
2pDt

dt

� �� 	� 

exp � zDn

dn

� �

Tt ¼ rmaxe 2pbsz
dn

dt

� �
sin

2pDt

dt

� �� 

exp � zDn

dn

� �
(31)

The normal cohesive strength, rmax, is attained when Dn ¼ dn=z
and Dt ¼ 0. Additionally, the characteristic length, dn, is
evaluated by its association with the mode I fracture energy and
cohesive strength, i.e.,

/n ¼ rmaxedn=z (32)

The other characteristic length, dt, is assumed to be the same as
dn, and the nondimensional scalar parameter, bs, is calibrated
(bs ¼ 1=2pez) so that the maximum value of Tt with Dn ¼ 0 is the
same as rmax.

The potential and the traction-separation relationships are
plotted in Fig. 7 where /n ¼ 100 N/m and rmax ¼ 30 MPa. The
normal traction demonstrates exponential softening behavior,
while the tangential traction illustrates periodic behavior. How-
ever, the imposed fracture properties are based solely on the mode
I fracture parameters, i.e., the fracture energy (/n) and the cohe-
sive strength (rmax), even though the potential considers mixed-
mode cohesive fracture interaction. The exponential-periodic
potential-based model does not include mode II fracture parame-
ters and, therefore, is limited in its ability to describe general
mixed-mode fracture behavior.

6.2 Generalized Exponential-Periodic Potential-Based
Model. The exponential-periodic potential proposed by
Needleman [7] was generalized by Beltz and Rice [8,153]. They
investigated the competition between cleavage decohesion and
dislocation nucleation for a slip plane under general loading. For a
broader perspective, cleavage decohesion could be considered as
normal separation while regarding dislocation as tangential sepa-
ration. Similarly to the potential proposed by Needleman [7], the
normal traction TnðDn;DtÞ is given by the following exponential
function,

Tn ¼ BðDtÞDn � CðDtÞ½ � expð�Dn=dnÞ (33)

while the tangential traction TtðDn;DtÞ is defined as a periodic
function, based on the Peierls concept [152,154], i.e.,

Tt ¼ AðDnÞ sin
2pDt

dt

� �
(34)

where AðDnÞ, BðDtÞ, and CðDtÞ are functions chosen to satisfy the
following boundary conditions. First, note that the potential is an
exact differential which satisfies the symmetry condition of
Eq. (7). Second, because the normal traction (Eq. (33)) is zero
when normal and tangential displacements are zero (i.e., initial
condition), Cð0Þ is equal to zero, i.e.,

Cð0Þ ¼ 0 (35)

As the area under a cohesive interaction represents the fracture
energy, the normal traction of a cleavage fracture is associated
with the surface energy, cs,ð1

0

TnðDn; 0ÞdDn ¼ 2cs ¼ /n (36)

In addition, the tangential traction of a dislocation nucleation pro-
cedure is related to the unstable stacking energy, cus,

ðdt=2

0

Ttð0;DtÞdDt ¼ cus ¼ /t (37)

which can be made equivalent to the mode II fracture energy ð/tÞ
in macroscopic fracture. The normal and tangential tractions (Tn

and Tt) satisfy the boundary conditions at the complete normal
separation (Dn ¼ 1), i.e.,

Tnð1;DtÞ ¼ 0; Ttð1;DtÞ ¼ 0 (38)

because fracture surfaces cannot transfer tractions when complete
separation occurs along the normal direction. Note that boundary
conditions associated with the complete shear separation are not
introduced. Although the tangential traction is set to be zero when
Dt is equal to dt=2, i.e., TtðDn; dt=2Þ ¼ 0; the normal traction is
not necessarily zero, e.g., TnðDn; dt=2Þ 6¼ 0. Because of this fact,
Beltz and Rice [8] introduced an additional length scale parame-
ter, D�n, which satisfies the following condition:

TnðD�n; dt=2Þ ¼ 0 (39)

From Eqs. (7), (35)–(39), the general expression for AðDnÞ,
BðDtÞ, and CðDtÞ are obtained as

AðDnÞ ¼
pcus

dt
� 2pcs

dt

�
q 1� exp �Dn

dn

� �� 	
� q� r

1� r

� �Dn

dn
exp �Dn

dn

� �

BðDtÞ ¼

2cs

d2
n

1� q� r

1� r

� �
sin2 pDt

dt
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CðDtÞ ¼
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dn

rð1� qÞ
1� r

sin2 pDt
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� �
(40)

with

q ¼ cus

2cs

¼ /t

/n

; r ¼ D�n
dn

(41)

where dn, dt, and D�n are length scale parameters. Substitution of
Eq. (40) into Eq. (33) and Eq. (34), and integration of Eq. (33)
and Eq. (34) lead to the generalized exponential-periodic potential
of Beltz and Rice [8,153]

W ¼ 2cs þ 2cs exp �Dn

dn

� ��
qþ q� r

1� r

� �Dn

dn

� 	
sin2 pDt

dt

� �
� 1þ Dn

dn

� 	

(42)

The characteristic length parameters (dn, dt) are determined
through their association with the cohesive strengths (rmax, smax)
and the fracture energies (/n, /t), i.e.,
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dn ¼ /n=ðermaxÞ; dt ¼ p/t=smax (43)

The other length scale parameter D�n is defined by Beltz and Rice
[8] as follows:

“D�n is the value of Dn after shearing to the state
Dt ¼ dt=2 under conditions of zero tension, Tn ¼ 0, (i.e., relaxed
shearing).”

Note that the parameter r, associated with a length scale D�n,
was estimated by using embedded atom methods [155].

Figure 8 demonstrates the potential function and its traction-
separation relationships where /n ¼ 2cs ¼ 100 N/m, /t ¼ cus

¼ 200 N/m, rmax ¼ 30 MPa, smax ¼ 40 MPa, and r ¼ 0. How-
ever, the potential contains a length scale fracture parameter,
D�n, which is difficult to evaluate. Furthermore, the potential
cannot be utilized for general interfacial shear failure because the
periodic function is employed for dislocation nucleation along the
tangential direction.

6.3 Exponential-Exponential Potential-Based Model. In
order to characterize complete interfacial shear failure, Xu and
Needleman [9] employed the exponential expression for the tan-
gential traction rather than the periodic function. The exponential-
exponential potential is expressed as

WðDn;DtÞ ¼ /n þ /n exp
�Dn

dn

� ��
1� r þ Dn

dn

� 	
ð1� qÞ
ðr � 1Þ

� qþ ðr � qÞ
ðr � 1Þ

Dn

dn

� 	
exp �D2

t

d2
t

 !

(44)

The first derivative of the exponential-exponential potential
results in the interfacial cohesive tractions,

Tn ¼
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dn
exp
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dn
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t
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exp �D2

t

d2
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(45)

Similar to the generalized exponential-periodic potential [8], the two
length scale parameters (dn, dt) are evaluated by relating the fracture
energies (/n, /t) to the cohesive strength (rmax, smax), i.e.,

/n ¼ rmaxedn; /t ¼
ffiffiffiffiffiffiffi
e=2

p
smaxdt (46)

The nondimensional parameter q is the ratio of the mode II frac-
ture energy (/t) to the mode I fracture energy (/n), i.e.,

q ¼ /t=/n (47)

The nondimensional parameter r is defined as

r ¼ D�n=dn (48)

where Xu and Needleman [9,96] indicate that
“D�n is the value of Dn after complete shear separation under the

condition of zero normal tension, i.e., Tn ¼ 0.”
Note that when the mode I fracture energy is the same as the

mode II fracture energy (q ¼ 1), the effect of the parameter r (or
D�n) disappears, and the potential is simplified as

WðDn;DtÞ ¼ /n � /n 1þ Dn

dn

� 	
exp

�Dn

dn

� �
exp �D2

t

d2
t

 !
(49)

Fig. 8 Beltz and Rice [8] generalized exponential-periodic potential and its gradients;
/n 5 2cs 5 100 N/m, /t 5 cus 5 200 N/m, rmax 5 30 MPa, smax 5 40 MPa, and r 5 0
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The exponential-exponential potential and its interfacial cohesive
responses are plotted in Fig. 9. The normal and tangential
tractions not only demonstrate the exponentially decreasing soft-
ening but represent the different fracture parameters, i.e., fracture
energy (/n ¼ 100 N/m, /t ¼ 200 N/m) and cohesive strength
(rmax ¼ 30 MPa, smax ¼ 40 MPa), in mode I and mode II.

6.4 Remarks on the Exponential-Exponential Model. The
exponential-exponential potential by Xu and Needleman [9] has
been extensively utilized to investigate various crack growth phe-
nomena in brittle solids [96,156], particle/matrix interfaces [157],
elastic-viscoplastic solids [158], steel-PMMA interfaces [159],
alumina/titanium composites [160], etc. However, the model has
several limitations arising from the fracture boundary conditions
and the exponential expression. First, a complete tangential failure
condition is not introduced along the normal cohesive traction,
which leads to an inconsistent boundary condition. Because of
such a boundary condition, the additional length scale parameter
(D�n) is introduced, and thus the model may provide nonphysical
cohesive interactions for several cases (i.e., r 6¼ 0, q 6¼ 1). Notice
that the exponential-exponential potential is derived by applying
the same boundary conditions as the exponential-periodic poten-
tial derived by Beltz and Rice [8]. The boundary conditions asso-
ciated with cohesive fracture are summarized as follows:

• mode I fracture energy:
Ð1

0
TnðDn; 0ÞdDn ¼ /n

• mode II fracture energy:
Ð1

0
Ttð0;DtÞdDt ¼ /t

• complete normal failure for the infinite normal separation:
Tnð1;DtÞ ¼ 0

• complete tangential failure for the infinite normal separation:
Ttð1;DtÞ ¼ 0

• complete tangential failure for the infinite shear separation:
TtðDn;1Þ ¼ 0

The main difference between the generalized exponential-
periodic potential of Beltz and Rice [8] and the exponential-

exponential potential of Xu and Needleman [9] is that Dt ¼ dt=2 in
the exponential-periodic potential may not be a sufficient condition
for complete failure along the normal direction, while the infinite
tangential separation (Dt ¼ 1) in the exponential-exponential
potential can be a sufficient condition for the complete failure along
the normal and tangential directions. In a strict sense, when tangen-
tial separation reaches infinity (Dt ¼ 1), the boundary condition
for the complete normal failure, i.e., TnðDn;1Þ ¼ 0, should be
introduced in the exponential-exponential potential, which would
result in consistent boundary conditions.

However, instead of enforcing the boundary condition
TnðDn;1Þ ¼ 0, the alternative boundary condition, TnðD�n;1Þ
¼ 0, is utilized by introducing the additional length scale para-
meter D�n, as discussed previously. The length scale parameter D�n
(or nondimensional parameter r) is difficult to calculate based on
either physical experiments or explanations.

Because of the deficiency in the boundary condition of com-
plete normal failure (the inconsistent boundary condition), when
the mode I fracture energy is greater than mode II fracture energy,
the cohesive interactions do not correspond to physical fracture
behavior. Figure 10 illustrates that the potential provides unac-
ceptably high normal traction around (Dn � 5lm, Dt � 0)
although almost complete tangential failure occurs around that
region. The normal traction does not decrease with respect to
increasing tangential separation, TnðDn;1Þ 6¼ 0, although the
increase of the tangential separation weakens materials and results
in the decrease of the normal traction. Additionally, when the
mode I fracture energy is different from the mode II fracture
energy, the model displays inconsistent variation of the work-of-
separation with respect to mode-mixity [3,161]. However, when
the mode I fracture energy is the same as the mode II fracture
energy (/n ¼ /t), the boundary condition associated with the
complete normal failure is satisfied, i.e., TnðDn;1Þ ¼ 0, as illus-
trated in Fig. 11.

Additionally, the exponential-exponential potential originates
from the atomistic potential which includes both elastic and fail-
ure behavior. When cohesive surface elements are inserted in a

Fig. 9 Xu and Needleman [9] exponential-exponential potential and its gradients;
/n 5 100 N/m, /t 5 200 N/m, rmax 5 30 MPa, smax 5 40 MPa, and r 5 0
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large domain, numerical simulations of the cohesive zone model can
lead to large artificial compliance [144,162]. Ideally, the elastic
behavior should generally be eliminated in the numerical implemen-
tation of cohesive surface elements. Moreover, because of the expo-

nential expression, the traction free condition occurs when separation
is infinite, although a final crack opening width is finite in macro-
scopic scale fracture. Note that the final crack opening width is sepa-
ration, which provides complete failure condition.

Fig. 10 Xu and Needleman [9] exponential-exponential potential and its gradients;
/n 5 200 N/m, /t 5 100 N/m, rmax 5 30 MPa, smax 5 40 MPa, and r 5 0

Fig. 11 Xu and Needleman [9] exponential-exponential potential and its gradients;
/n 5 100 N/m, /t 5 100 N/m, rmax 5 30 MPa, and smax 5 40 MPa
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The limitations of the exponential-exponential potential-based
model are summarized as follows:

• It contains an ill-defined fracture parameter, D�n, which is dif-
ficult to determine experimentally. However, the parameter
disappears when the mode I fracture energy is the same as
the mode II fracture energy (see Fig. 11).

• It may not be applicable when the mode I fracture energy is
different from the mode II fracture energy.

• It provides large artificial compliance for numerical simula-
tion of cohesive surface elements because it does not allow
any control of the elastic behavior.

• Due to the exponential function, the final crack opening
width is infinite, which does not resemble macroscopic frac-
ture behavior.

Notice that one may be able to control the initial slope (or artifi-
cial compliance) and change the shape of the traction-separation
relationship through introducing additional fracture parameters in
the exponential-exponential model. However, the other limita-
tions, i.e., ill-defined fracture parameters, different fracture ener-
gies and inconsistent work-of-separation, are not related to the
number of fracture parameters, but associated with the complete
failure boundary condition, i.e., TnðD�n;1Þ ¼ 0.

7 PPR: General Unified Potential-Based Model

In order to tackle limitations in the previous potential-based
models, a polynomial-based potential was formulated in conjunc-
tion with physical fracture parameters and consistent fracture
boundary conditions [3]. Four physical fracture parameters are
employed in each fracture mode: fracture energy, cohesive
strength, shape, and initial slope. The potential-based model satis-
fies the following boundary conditions associated with cohesive
fracture:

• complete normal failure when Tnðdn;DtÞ ¼ 0 or
TnðDn; �dtÞ ¼ 0

• complete tangential failure when TtðDn; dtÞ ¼ 0 or
Ttð�dn;DtÞ ¼ 0

• mode I fracture energy:
Ð dn

0
TnðDn; 0ÞdDn ¼ /n

• mode II fracture energy:
Ð dt

0
Ttð0;DtÞdDt ¼ /t

• normal cohesive strength: Tnðdnc; 0Þ ¼ rmax where @Tn

@Dn Dn¼dnc


¼ 0

• tangential cohesive strength: Ttð0; dtcÞ ¼ smax where @Tt

@Dt Dt¼dtc


¼ 0

In addition to the boundary conditions, shape parameters (a, b)
are introduced to characterize various material softening
responses, e.g., brittle, plateau and quasi-brittle.

Based on the above boundary conditions, the potential of
mixed-mode cohesive fracture, called the PPR potential, is
expressed as [3]

WðDn;DtÞ¼minð/n;/tÞþ Cn 1�Dn

dn

� �a m

a
þDn

dn

� �m

þ h/n�/ti
� 	

� Ct 1� Dtj j
dt

� �b n

b
þ Dtj j

dt

� �n

þ h/t�/ni
" #

(50)

where h	i is the Macaulay bracket, i.e.,

hxi ¼
0; ðx < 0Þ
x; ðx 
 0Þ

�
(51)

The gradient of the PPR potential leads directly to the traction
vector,

TnðDn;DtÞ ¼
Cn

dn

�
m 1� Dn

dn

� �a m

a
þ Dn

dn

� �m�1

� a 1� Dn

dn

� �a�1 m

a
þ Dn

dn

� �m	

� Ct 1� Dtj j
dt

� �b n

b
þ Dtj j

dt

� �n

þ h/t � /ni
" #

TtðDn;DtÞ ¼
Ct

dt

�
n 1� Dtj j

dt

� �b n

b
þ Dtj j

dt

� �n�1

� b 1� Dtj j
dt

� �b�1 n

b
þ Dtj j

dt

� �n	
� Cn 1� Dn

dn

� �a m

a
þ Dn

dn

� �m

þh/n � /ti
� 	

Dt

Dtj j
(52)

Notice that the value of TtðDn;DtÞ at Dt ¼ 0 exists in the limit
sense, i.e.,

lim
Dt!0þ

TtðDn;DtÞ ¼ 0; lim
Dt!0�

TtðDn;DtÞ ¼ 0 (53)

The normal and tangential tractions are defined within the cohe-
sive interaction (softening) region where the fracture surface
transfers cohesive normal and tangential tractions—see Sec. 7.1.

The characteristic parameters (dn, dt; Cn, Ct; m, n; a, b) in the
potential function are determined by satisfying the aforemen-
tioned boundary conditions. The normal and tangential final crack
opening widths (dn, dt) are expressed as

dn ¼
/n

rmax

akn 1� knð Þa�1 a
m
þ 1

� � a
m

kn þ 1
� �m�1

dt ¼
/t

smax

bkt 1� ktð Þb�1 b
n
þ 1

� �
b
n

kt þ 1

� �n�1

(54)

which are characteristic lengths. The energy constants, Cn and Ct,
are given as

Cn ¼ ð�/nÞ
h/n�/ti
/n�/t

a
m

� �m
; Ct ¼ ð�/tÞ

h/t�/ni
/t�/n

b
n

� �n

for ð/n 6¼/tÞ

(55)

and

Cn ¼ �/n

a
m

� �m
; Ct ¼

b
n

� �n

for ð/n ¼ /tÞ (56)

The nondimensional exponents, m and n, are expressed as

m ¼ aða� 1Þk2
n

ð1� ak2
nÞ
; n ¼ bðb� 1Þk2

t

ð1� bk2
t Þ

(57)

where the initial slope indicators (kn, kt) are the ratio of the criti-
cal crack opening width (dnc, dtc) to the final crack opening width,
i.e., kn ¼ dnc=dn and kt ¼ dtc=dt. Note that the initial slope indica-
tors control elastic behavior. A smaller value of the initial slope
indicator provides higher initial stiffness in the traction-separation
relationship.

The nondimensional shape parameters (a, b) provide flexibility
in the choice of softening shape. This is because the specific shape
of the cohesive zone model can significantly affect results of frac-
ture analyses [163–165], especially for quasi-static problems. If
the shape parameter indices are equal to two (a ¼ b ¼ 2), the
resulting gradient of the potential represents an almost linearly
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decreasing cohesive relationship. When the shape parameters are
less than two (i.e., 1 < a < 2, 1 < b < 2), the gradient of the
potential demonstrates a concave softening shape, which repre-
sents a plateau-type function. If the shape parameter indices are
chosen as larger values (i.e., a > 2, b > 2), the cohesive traction-
separation relationship has a convex shape, which can be utilized
for the analysis of quasi-brittle materials.

The PPR potential and its gradients are plotted in Fig. 12 with
different fracture energies (e.g., /n ¼ 100 N/m, /t ¼ 200 N/m),
cohesive strengths (e.g., rmax ¼ 40 MPa, smax ¼ 30 MPa), shape
(e.g., a ¼ 5, b ¼ 1:3) and initial slope indicators (e.g., kn ¼ 0:1,
kt ¼ 0:2). The normal cohesive traction illustrates fracture
behavior of a typical quasi-brittle material, while the tangential
cohesive traction describes a plateau-type behavior. The
potential-based model is also applicable when the mode I frac-
ture energy is greater than the mode II fracture energy because
the potential is explicitly derived by using the actual boundary
conditions for mode I and mode II. The PPR potential-based
model is utilized to investigate matrix/particle debonding [59],
dynamic crack propagation, microbranching instability, and frag-
mentation [107,166]. Computational implementation of the
model within a standard finite element method framework is
straightforward if one employs an intrinsic cohesive zone model-
ing approach [167].

7.1 Characteristic Lengths and Cohesive Interaction
Region. Since the PPR potential is based on polynomial func-
tions, the normal and tangential traction-separation relationships
are defined within a finite domain. The cohesive interaction region
is determined on the basis of characteristic lengths, i.e., the final
crack opening widths (dn, dt) and the conjugate final crack open-
ing widths (�dn, �dt). The final crack opening widths (dn, dt) are
obtained from Eq. (54), while the normal and tangential conjugate
final crack opening widths (�dn, �dt) are evaluated by solving the
following nonlinear functions:

fnðDnÞ ¼ Cn 1� Dn

dn

� �a m

a
þ Dn

dn

� �m

þh/n � /ti ¼ 0 (58)

and

ftðDtÞ ¼ Ct 1� Dtj j
dt

� �b n

b
þ Dtj j

dt

� �n

þh/t � /ni ¼ 0 (59)

respectively.
The normal cohesive interaction region is associated with dn

and �dt, while the tangential cohesive interaction region is associ-
ated with dt and �dn, as illustrated in Fig. 13. When separations are
within the normal cohesive interaction region (i.e., 0 � Dn � dn

and jDtj � �dt), the normal cohesive traction is obtained from the
PPR potential. When separations are outside of the normal inter-
action region, the normal cohesive traction is set to zero. Simi-
larly, if separations are within the tangential cohesive interaction
region (i.e., 0 � Dn � �dn and jDtj � dt), the tangential cohesive
traction is obtained from the PPR potential. Otherwise, the tangen-
tial traction is set to zero.

Fig. 12 Unified mixed-mode potential (PPR) [3] and its gradients for the intrinsic cohe-
sive zone model with /n 5 100 N/m, /t 5 200 N/m, rmax 5 40 MPa, smax 5 30 MPa, a 5 5,
b 5 1:3, kn 5 0:1, and kt 5 0:2

Fig. 13 Description of each cohesive interaction (Tn, Tt ) region
defined by the final crack opening widths (dn, dt ) and the conju-
gate final crack opening widths (�dn, �dt ); (a) Tn versus ðdn; �dt Þ
space; (b) Tt versus ð�dn; dt Þ space
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7.2 Extrinsic Cohesive Zone Model. The PPR potential
function naturally extends to the case of the extrinsic cohesive
zone model, which excludes the elastic behavior (or initial ascend-
ing part) in the cohesive interactions. The limit of the initial slope
indicators in the PPR potential (kn ! 0 and kt ! 0) of Eq. (50)
eliminates the initial slope indicators (kn, kt) and the exponents
(m, n) from the resulting expression. Thus, the potential function
for the extrinsic cohesive zone model is expressed as

WðDn;DtÞ ¼ minð/n;/tÞ þ Cn 1� Dn

dn

� �a

þ h/n � /ti
� 	

� Ct 1� Dtj j
dt

� �b

þ h/t � /ni
" #

(60)

The gradient of the potential leads to the normal and tangential
tractions along the fracture surface,

TnðDn;DtÞ ¼�a
Cn

dn
1�Dn

dn

� �a�1

Ct 1� Dtj j
dt

� �b

þ h/t�/ni
" #

TtðDn;DtÞ ¼�b
Ct

dt
1� Dtj j

dt

� �b�1

Cn 1�Dn

dn

� �a

þ h/n�/ti
� 	

Dt

Dtj j
(61)

The tangential traction provides a finite value at the initiation point
(Dt ¼ 0), and therefore introduces the expected discontinuity, i.e.,

lim
Dt!0þ

TtðDn;DtÞ ¼ �b
Ct

dt
Cn 1� Dn

dn

� �a

þ h/n � /ti
� 	

lim
Dt!0�

TtðDn;DtÞ ¼ b
Ct

dt
Cn 1� Dn

dn

� �a

þ h/n � /ti
� 	

(62)

which is a feature of the extrinsic cohesive zone model.
The normal and tangential tractions are defined in a cohesive

interaction region associated with the final crack opening width

(dn, dt) and the conjugate final crack opening width (�dn, �dt). The
final crack opening widths are expressed as

dn ¼ a/n=rmax; dt ¼ b/t=smax (63)

which are associated with the fracture boundary conditions of
Tnðdn;DtÞ ¼ 0 and TtðDn; dtÞ ¼ 0, respectively. The conjugate
final crack opening widths (�dn, �dt) are given in closed form

�dn ¼ dn � dn
h/n � /ti

/n

� �1=a

; �dt ¼ dt � dt
h/t � /ni

/t

� �1=b

(64)

which satisfy the conditions of Ttð�dn;DtÞ ¼ 0 and TnðDn; �dtÞ ¼ 0,
respectively. The energy constants are expressed as

Cn ¼ ð�/nÞ
h/n�/ti
/n�/t ; Ct ¼ ð�/tÞ

h/t�/ni
/t�/n ð/n 6¼ /tÞ (65)

for the different fracture energies. If the fracture energies are the
same, one obtains the energy constants,

Cn ¼ �/n; Ct ¼ 1 ð/n ¼ /tÞ (66)

Using the same fracture parameters, as illustrated in Fig. 12, the
potential for the extrinsic cohesive zone model is plotted in
Fig. 14. The initial slope is excluded, and the traction discontinu-
ity is introduced at zero separation. In summary, rather than pro-
viding infinite slope, the cohesive interactions for the extrinsic
cohesive zone model are derived by taking the limit of the initial
slope indicators from the potential function. Thus, the discontinu-
ities are naturally introduced at crack initiation.

7.3 Two- and Three-Dimensional Formulations. The PPR
model is applicable for both two- and three-dimensional prob-
lems. In two-dimensional problems, the normal separation (Dn)
corresponds to the surface normal local coordinate (D1), i.e.,
Dn ¼ D1, while the tangential separation (Dt) agrees with the
surface tangential local coordinate (D2), i.e., Dt ¼ D2, shown in
Fig. 3(a). Thus, the cohesive traction vector and the material tan-
gent matrix (D) are obtained from the potential, which are
expressed as

TðDn;DtÞ ¼
T1

T2

� 

¼

Tn

Tt

� 

¼

@W=@Dn

@W=@Dt

� 

(67)

and

DðDn;DtÞ ¼
Dnn Dnt

Dtn Dtt

� 	
¼ @2W=@D2

n @2W=@Dn@Dt

@2W=@Dt@Dn @2W=@D2
t

" #
(68)

when separations are within the cohesive interaction region.
In three-dimensional problems, the out-of-plane separation (D1)

matches the normal separation (Dn). The in-plane separations (D2,
D3) are related to the tangential separation (Dt) by introducing an

effective quantity [168], i.e., Dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

2 þ D2
3

q
(Fig. 3(b)). The sub-

stitution of the effective quantity into the PPR potential expres-
sion and the gradient of the potential lead to a cohesive traction
vector

T ¼
@W=@D1

@W=@D2

@W=@D3

8><>:
9>=>; ¼

T1

T2

T3

8><>:
9>=>; ¼

Tn

TtD2=Dt

TtD3=Dt

8><>:
9>=>; (69)

where T1, T2, and T3 are cohesive tractions along the separation
directions of D1, D2, and D3, respectively. The second derivatives
of the PPR potential with respect to the separations in the local
coordinates result in the material tangent matrix,

D ¼
Dnn DntD2=Dt DntD3=Dt

DtnD2=Dt DttD
2
2=D

2
t þ TtD

2
3=D

3
t DttD2D3=D

2
t � TtD2D3=D

3
t

DtnD3=Dt DttD2D3=D
2
t � TtD2D3=D

3
t DttD

2
3=D

2
t þ TtD

2
2=D

3
t

24 35 (70)

7.4 Path Dependence of Work-of-Separation. The PPR
model provides a consistent constitutive relationship under
mixed-mode conditions. The consistency of the traction-

separation relationship is demonstrated by assessing the work-of-
separation [3,161]. The work-of-separation (Wsep) consists of the
work done (Wn) by the normal traction and the work done (Wt) by

Applied Mechanics Reviews NOVEMBER 2011, Vol. 64 / 060802-15

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 04/16/2013 Terms of Use: http://asme.org/terms



the tangential traction. Two separation paths are investigated.
First, material particles separate along the normal direction up to
Dn ¼ Dn;max, and then the complete tangential failure occurs, i.e.,
Path 1 in Fig. 15(a). In this case, the work-of-separation is eval-
uated by the following expression:

Wsep ¼
ðDn;max

0

TnðDn; 0ÞdDn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wn

þ
ðdt

0

TtðDn;max;DtÞdDt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wt

(71)

For the other path, material particles separate along the tangential
direction up to Dt ¼ Dt;max, and then the complete normal failure
occurs, i.e., Path 2 in Fig. 15(b). Accordingly, the work-of-sepa-
ration for the second path is expressed as

Wsep ¼
ðDt;max

0

Ttð0;DtÞdDt|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wt

þ
ðdn

0

TnðDn;Dt;maxÞdDn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wn

(72)

Fracture parameters in the PPR model are arbitrarily selected as
/n ¼ 100 N/m, /t ¼ 200 N/m, rmax ¼ 3 MPa, smax ¼ 12 MPa,

a ¼ 3, b ¼ 3, kn ¼ 0:01 and kt ¼ 0:01. The variation of the
work-of-separation is illustrated in Fig. 16. For Path 1, Dn;max ¼ 0
indicates the mode II failure while Dn;max ¼ dn represents the
mode I failure. Thus, while Dn;max increases from zero to dn,
the work-of-separation (Wsep) monotonically decreases from the
mode II fracture energy (/t) to the mode I fracture energy (/n).
The work done (Wn) by the normal traction increases from 0 to /n

while the work done (Wt) by the tangential traction decreases
from /t to zero.

For Path 2, the separation path corresponds to the mode I failure
when Dt;max ¼ 0 and to the mode II failure when Dt;max ¼ dt. The
increase of Dt;max from 0 to dt leads to the monotonic increase of
Wsep from /n to /t although there is a kink point, as illustrated in
Fig. 16(b). The separation at the kink point corresponds to the tan-
gential conjugate final crack opening width (�dt). When the tangential
separation is smaller than �dt, the normal cohesive traction is obtained
from the potential function. When Dt > �dt, the normal cohesive trac-
tion is zero. Thus, the normal cohesive traction is not smooth but
piece-wise continuous at Dt ¼ �dt in this example. The work-of-sepa-
ration (Wsep) and the work done (Wn) by the normal cohesive trac-
tion are associated with the integration of the normal cohesive
traction, and therefore, Wsep and Wn are also piece-wise continuous.

Fig. 14 The PPR potential [3] and its gradients for the extrinsic cohesive zone model
with /n 5 100 N/m, /t 5 200 N/m, rmax 5 40 MPa, smax 5 30 MPa, a 5 5, and b 5 1:3

Fig. 15 Two arbitrary separation paths for the material debonding process; (a) nonproportional path
1; (b) nonproportional path 2
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8 Concluding Remarks

This review article provides a critique of constitutive relation-
ships for cohesive zone models, with an emphasis on potential-
based models. Several effective displacement-based models
[98,135,136,138,139] are formulated in a single framework by
modifying the effective traction ( �T) and a mode-mixity parameter
(ae). The model provides various shapes of the effective traction-
separation ( �T � �D) relation. However, the model can provide posi-
tive stiffness under softening conditions, and thus the increase of
separation results in the increase of the corresponding traction.
General potential-based models are expressed in terms of normal
and tangential separations (Dn, Dt) rather than an effective quan-
tity. The general potential-based models with polynomials [4,5]
are based on cubic-polynomials for the normal cohesive traction
in conjunction with a linear tangential traction. Because of the
linear tangential traction, the mode II fracture energy is
unbounded, and thus these models should either not be utilized
or be utilized with caution for problems that have significant tan-
gential separation. The general potential-based models with the
universal binding energy [7–9] are chronologically reviewed. The
exponential-periodic potential-based model [7] was generalized
by applying several boundary conditions associated with cohesive
fracture [8]. In order to account for complete shear failure in the
generalized exponential-periodic potential-based model [8], the
exponential-exponential potential-based model was proposed [9].
However, the exponential-exponential potential-based model has
issues on boundary conditions associated with the complete fail-
ure condition, especially when the mode I fracture energy is dif-
ferent from the mode II fracture energy. Additionally, the models
with exponential expressions are based on an atomistic potential
which includes elastic behavior, and thus the traction-separation
relationships can lead to a significant artificial elastic range that is
not controllable. Alternatively, the unified potential-based model
[3] is derived on the basis of consistent boundary conditions asso-
ciated with fracture parameters such as fracture energy, cohesive
strength, shape and initial slope. However, potential-based models
still possess several limitations on representing physical phenom-
ena associated with cohesive fracture, as discussed below:

• The presented potential-based models are proposed under the
condition of monotonic separation paths. Thus, unloading/
reloading relations should be addressed independently in order
to describe energy dissipations, which include fatigue damage.

• The reviewed potential functions are rate independent. In order
to account for rate-dependent fracture behaviors, the potential-
based models may need additional constraints or a rate-
dependent potential-based model may need to be developed.

• Potential-based models of cohesive fracture mostly focus on
a softening condition. When compression acts on the fracture
surface, a penalty stiffness is generally introduced, and thus
the models provide negative normal separations. In order to
accurately represent contact, friction, and its rate dependence
along the fracture surface under compression, one may need
to introduce additional constitutive relationships.

• The unified potential-based model is determined on the basis
of four fracture parameters in each fracture mode. The deter-
mination of the fracture parameters are a challenging task,
especially for the shearing mode.

In conclusion, the constitutive relationship of mixed-mode co-
hesive fracture should be selected with great caution.
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Nomenclature

h	i ¼ Macaulay bracket
Cn, Ct ¼ energy constants in the PPR model

�D ¼ nondimensional effective displacementeD ¼ effective displacement
Dn,Dt ¼ normal and tangential separations

Dn;max,Dt;max ¼ maximum normal and tangential separations in a
separation path

D�n ¼ length scale parameter in the exponential
potential-based model

Dt ¼ in-plane tangential separation vector
D1,D2,D3 ¼ separations along the local coordinate system

W ¼ potential for cohesive fracture
a,b ¼ shape parameters in the PPR model

ae,be ¼ nondimensional constant in the effective
displacement-based model

bs ¼ nondimensional constant in the exponential
potential-based model

as ¼ shear stiffness parameter
a2,a3 ¼ nondimensional constant associated with mode-

mixity in three-dimensions

Fig. 16 Variation of the work-of-separation considering the PPR potential [3] (/n 5 100 N/m,
/t 5 200 N/m); (a) nonproportional path 1; (b) nonproportional path 2
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cs ¼ surface energy
cus ¼ unstable stacking energy

dn,dt ¼ normal and tangential characteristic lengths
dnc,dtc ¼ critical normal and tangential crack opening

widths in the PPR model
�dn, �dt ¼ normal and tangential conjugate final crack open-

ing widths in the PPR model
d1,d2,d3 ¼ characteristic lengths in three-dimensions

d�c ¼ internal length scale variable
kn,kt ¼ initial slope indicators

h ¼ phase angle
rmax,smax ¼ cohesive strength

/n,/t ¼ fracture energy
D ¼ tangent matrix

Dmin ¼ internal parameter
Ds ¼ internal residual strength variable
E0 ¼ initial modulus of an interface layer
T ¼ cohesive traction vector

�T, eT ¼ effective traction
Tn, Tt ¼ normal and tangential cohesive tractions

T1, T2, T3 ¼ cohesive tractions along the local coordinate
system

Wsep ¼ work-of-separation
Wn, Wt ¼ work done by normal and tangential traction

‘ ¼ scaled separation associated with the
Thomas–Fermi screening length

m,n ¼ nondimensional exponents in the PPR model
nn ¼ unit normal separation vector with respect to the

cohesive surface
nt ¼ unit in-plane tangential separation vector with

respect to the cohesive surface
q ¼ ratio of the mode II fracture energy to the mode I

fracture energy
r ¼ nondimensional parameter associated with length

scales
t�0 ¼ internal cohesive traction variable
z ¼ nondimensional constant in the exponential

potential-based model
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