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In order to achieve realistic cohesive fracture simulation, a parallel computational framework is devel-
oped in conjunction with the parallel topology based data structure (ParTopS). Communications with
remote partitions are performed by employing proxy nodes, proxy elements and ghost nodes, while syn-
chronizations are identified on the basis of computational patterns (at-node, at-element, nodes-to-element,
and elements-to-node). Several approaches to parallelize a serial code are discussed. An approach combin-
ing local computations and replicated computations with stable iterators is proposed, which is shown to
be the most efficient one among the approaches discussed in this study. Furthermore, computational
experiments demonstrate the scalability of the parallel dynamic fracture simulation framework for both
2D and 3D problems. The total execution time of a test problem remains nearly constant when the num-
ber of processors increases at the same rate as the number of elements.
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1. Introduction

Cohesive fracture simulations usually require a fine mesh dis-
cretization in order to capture non-linear behavior near the crack
tip regions. This demands a large amount of computational re-
sources, and thus realistic scale computations are generally lim-
ited. Alternatively, models of reduced geometries can be used in
the simulations. However, reduced models do not accurately repre-
sent the original experiments, due to material-dependent length
scales [1], and dependency of the direction of crack propagation
on the mesh refinement level [1,2]. As real-scale cohesive fracture
simulations may not be practical or feasible in a serial code exe-
cuted on a single workstation, parallel processing becomes practi-
cally inevitable.

Current massively parallel environments are based on distrib-
uted memory architectures [14], in which each processor (or group
of processors) of a computing node has private access to a region of
the global system memory. Processors on different nodes commu-
nicate over a network by sending messages to each other in order
to exchange data. In the context of finite element analysis, the
model is divided into a set of partitions, which are distributed
among the available processors such that computation can proceed
in parallel. Network communication is necessary to synchronize
simulation state data among mesh partitions.
Several parallel systems with support for distributed mesh rep-
resentation have been proposed [3–9]. Some of them address var-
ious additional issues, like mesh adaptation and load balancing.
Extrinsic cohesive fracture simulations, however, require that
cohesive elements be adaptively inserted as cracks propagate.
The parallel topological framework named ParTopS [10] provides
support for the representation of fractured meshes and adaptive
insertion of cohesive elements, for both 2D and 3D meshes of dif-
ferent types of elements. The framework is implemented as an
extension of the serial TopS topological data structure [11–13].

In this paper, we propose an approach for the parallelization of
three-dimensional dynamic fracture simulations based on ParTopS,
which was presented in Ref. [10]. While Ref. [10] addresses the
topological aspects of a distributed mesh representation required
for parallel fracture simulations, and presents results of computa-
tional experiments that suggest the scalability of the topological
framework, the current work builds on ParTopS to develop a com-
pact programmer’s interface for creating parallel numerical appli-
cations from an existing serial code. To this end, we extend
ParTopS with a reduced set of collective functions that are inserted
into the serial numerical code and require minor changes in order
to enable parallel dynamic cohesive fracture simulation associated
with microbranching and fragmentation. In addition, we discuss
different strategies to parallelize an existing serial simulation and
exploit replicated computations on different mesh partitions in or-
der to minimize the need of network communication between
pairs of partitions. Those strategies consider that an extrinsic
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cohesive model of fracture be used, and thus cohesive elements are
adaptively created and inserted along evolving crack paths, wher-
ever and whenever determined by the analysis (there is no finite
element analysis in Ref. [10]). The effectiveness and scalability of
parallel simulations are evaluated through a set of computational
experiments. We demonstrate the scalability of the topological
framework on 1024 processors, which add and complement Ref.
[10].

The organization of this paper is as follows. Related work is dis-
cussed in Section 2. Section 3 reviews TopS and ParTopS, the serial
and parallel topological mesh representations used in this work to
support parallel fracture simulations. In Section 4, we discuss the
parallelization based on a sample simulation application by means
of the introduction of the distributed topological mesh representa-
tion. Section 5 presents computational experiments that demon-
strate the scalability of large simulations based on the proposed
parallelization scheme. Concluding remarks and directions for fu-
ture work are discussed in Section 6.

2. Related work

Support for parallel simulations has been one of the main fea-
tures offered by recently developed systems for finite element
analysis. Some of the important issues addressed by the current
systems include: distributed mesh representation, parallel adap-
tivity and load balancing, interface to parallel solvers, and treat-
ment of physical aspects of simulations. Several frameworks,
such as PMDB [6,7], AOMD [4], FMDB [5], libMesh [8], ParFUM
[3] and ParTopS [10], provide distributed representation of general
unstructured meshes. The Zoltan library [27] also contains a set of
utilities that are helpful for the management of distributed meshes,
including mesh partitioning and communication procedures. Some
systems, like the Sandia National Laboratory’s SIERRA [9] frame-
work and PETSc [28], address aspects related to both distributed
meshes and the solution of partial differential equations. The exist-
ing parallel systems provide many fundamental services, which
enable a wide range of finite element applications such as wave
propagations [46,44], hydraulic fracture [45], fatigue crack growth
[47], mantle convection simulations [48], etc.

Cohesive zone models of fracture introduce some challenges to
the representation of distributed finite element meshes and to the
simulation process [29]. When the intrinsic cohesive approach [30]
is used, cohesive elements are created at inter-element interfaces
before the fracture simulation starts. Since no mesh modification
is required during the course of the simulation, parallelization be-
comes easier. The issues that must be handled by the mesh repre-
sentation comprise the correct handling of mesh partitioning and
inter-partition communications under the presence of cohesive
elements. However, the cohesive elements act like nonlinear
springs in the intrinsic approach, which may introduce significant
artificial reduction of stiffness. On the other hand, in the extrinsic
approach [20,22,23], cohesive elements are inserted (or activated)
on demand when a fracture criterion specified by the simulation
code is met. This makes a distributed mesh representation more
complex, as topological changes may occur during the simulation,
and thus must be handled locally and propagated to the neighbor-
ing partitions in a seamless and efficient manner. Serial algorithms
for dynamic insertion of cohesive elements are currently available
in the literature [31–33,13]. Due to the difficulties of the parallel-
ization of the extrinsic cohesive approach, especially for three-
dimensional meshes, few works have been presented to the best
of the authors’ knowledge.

Dooley et al. [34] employ a strategy based on element activa-
tion. In their approach, cohesive elements exist at every inter-ele-
ment interface of the initial mesh, but remain inactive until the
fracture criterion is met, when the traction-separation relation
takes effect and the element becomes part of the simulation pro-
cess. From a mesh topology point of view, this approach is equiv-
alent to the intrinsic approach, in the sense that cohesive
elements have been pre-inserted at all the inter-element interfaces
at which cracks are expect to develop. The difference is that cohe-
sive elements are made active to the simulation only when neces-
sary. With the use of pre-inserted cohesive elements, the mesh
topology does not need to change during the course of the simula-
tion (unless adaptive mesh refinement techniques are employed).
Hence, no communication is required in order to propagate topo-
logical changes to neighboring partitions, facilitating distributed
mesh representation. On the other hand, it also introduces some is-
sues that must be handled by the mesh representation framework.
During the mesh construction, every node lying on inter-element
interfaces is replicated as many times as the number of incident
bulk elements, such that cohesive elements can be properly cre-
ated. However, even when no cohesive element is currently active
in the simulation, those elements, and the additional multiple node
copies, still exist in the local mesh topology. This may introduce a
significant overhead on the simulation, because the number of ac-
tual fractured facets is small if compared to the total number of
facets in the model. Moreover, the actual mesh representation does
not correspond to the one that is used for computation purposes.
Therefore, the application itself or an additional access layer of
the underlying mesh framework must be responsible for managing
the consistent access to replicated nodes. While a cohesive element
is not active, each pair of nodes shared between the two edges of a
two-dimensional cohesive element corresponds to a single regular
node in the simulation, although topologically represented as two
different nodes. To overcome the inconsistency resulting from
unnecessary nodal duplication and thus ensure mesh continuity
in the simulation, a random node is chosen amongst the multiple
node copies as the representative ‘‘root node’’. Nodal attributes
are then computed and assigned to the root node. The difference
between the mesh representation and the mesh used for simula-
tion also affects the retrieval of some adjacency relationships be-
tween mesh entities. Access to those relationships do not have a
natural and uniform treatment, since two bulk elements that
should be adjacent to each other in the simulation are separated
by an inactive cohesive element in the mesh representation.

The implementation of Dooley et al.’s approach [34] is based on
the ParFUM framework [3], developed on top of the Charm++ par-
allel framework [16]. Hence, support is provided for the creation of
‘‘virtual processors’’ that are assigned to a smaller number of phys-
ical processors, which facilitate the overlapping of computation
and communication in parallel applications. The parallel simula-
tion code is split into two main routines: init() and driver() [34].
In init(), the whole unpartitioned mesh is loaded on a single pro-
cessor. After init() has finished, ParFUM partitions the mesh and
creates inter-partition communication infrastructure. The driver()
routine runs in parallel, with one instance associated to each par-
tition of the mesh, and executes the main time-step computations
(explicit integration and synchronization of values on partition
boundaries). Communication between neighboring partitions is
done through a ‘‘ghost layer’’, consisting of read-only copies of ele-
ments and nodes from neighboring partitions, that is created
around shared partition boundaries. Scalable dynamic fracture
simulation results are presented for two-dimensional triangular
meshes of up to 1.2 million elements and 512 processors. A com-
plementary work by Mangala et al. [35] addresses parallel mesh
adaptivity for two-dimensional meshes in ParFUM. In addition,
ParFUM and the topology based data structure TopS have been
integrated to investigate wave propagation in three-dimensional
functionally graded media [44].
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Fig. 1. The facet f is used by the two adjacent elements, in both 2D (a) and 3D (b)
cases. One facet-use entity (fu) is defined for each element that uses the facet. The
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Radovitzky et al. [36] present an algorithm to parallelize extrin-
sic cohesive fracture simulations that is based on the combination
of a discontinuous Galerkin (DG) formulation [37,38] for the con-
tinuum problem with cohesive zone models (CZM) to represent
fractured faces [20,1,30,22,23]. Similarly to the intrinsic cohesive
approach and Dooley et al.’s extrinsic approach [34], cohesive ele-
ments are created at every inter-element interface during the con-
struction of the initial mesh. However, additional terms to the
weak formulation of the problem, due to the introduction of the
DG formulation, ensures that the simulation performs consistently
in the absence of fracture, avoiding issues related to the intrinsic
approach. The extrinsic cohesive law takes effect when the fracture
criterion is met at a given inter-element interface, thus replacing
the DG terms. Synchronization of nodal attributes of the simulation
is done by adding local partition contribution to all the nodes in the
partition and then completing boundary nodes by using an MPI
[15] parallel reduced operation. Since cohesive elements are pre-
inserted across the whole mesh domain, the requirement of prop-
agation of topological changes is removed, and thus this approach
shows to be scalable to a large number of processors. Results for
wave propagation and dynamic fragmentation are presented for
quadratic tetrahedral meshes (although, the procedure can be ap-
plied to other types of element) of up to 103 million elements on
4096 processors. Results for parallel simulation of three-dimen-
sional crack growth for a spiral bevel pinion gear model have also
been presented in Ref. [47].

The approach proposed in this paper for scalable three-dimen-
sional fracture simulations is based on the distributed mesh repre-
sentation provided by the ParTopS framework [10]. This
framework is implemented as a parallel extension to the serial
TopS [11,12] topological data structure, and to the algorithm for
dynamic insertion of cohesive elements proposed by Paulino
et al. [13]. Therefore, cohesive elements are allowed to be inserted
into the mesh on demand, whenever the fracture criterion is met,
as required by the extrinsic cohesive model formulation. The Par-
TopS framework ensures that no unnecessary node duplications
occurs when cohesive elements are not present in the simulation
and that topological changes are seamlessly and transparently
propagated to neighboring partitions, in a scalable fashion [10].
As a consequence, global mesh topology is consistently maintained
after every mesh modification operation, and the topological mesh
corresponds to the simulation mesh. Cohesive elements are repre-
sented as regular mesh elements within the mesh topology, with
uniform topological operators and algorithms applied to both
two- and three-dimensional meshes, with possibly different types
of elements. In order to reduce inter-partition communications,
symmetrical mesh modifications and replicated computation of
simulation data are exploited. Complex crack patterns are natu-
rally handled without affecting scalability, which makes the frame-
work suitable for micro-branching and fragmentation simulations.

3. Topological framework for fracture representation

In the following subsections the serial and parallel fracture
mesh representations are briefly reviewed.

3.1. TopS: serial fracture representation

The adjacency-based topological data structure named TopS has
been first proposed by Celes et al. [11] and further discussed in
Refs. [12,13]. It provides a compact mesh representation (thus
requiring a reduced storage space) for manifold meshes, while pre-
serving the ability to retrieve all the adjacency relationships be-
tween any pair of mesh entities in time proportional to the
number of retrieved entities. Of special interest here, it also pro-
vides a uniform interface for the representation and treatment of
cohesive elements, with an efficient support for dynamic insertion
of those elements, which is required for truly extrinsic fracture and
fragmentation simulation. The concepts of TopS related to this
work are briefly reviewed next.

3.1.1. Topological entities
The topological data structure defines various types of entities.

However, only element and node entities are explicitly represented.
This means that those entities have a concrete representation,
which is actually stored in the memory space of the topological
data structure. Element represents a finite element of any type that
can be defined by templates of ordered nodes. This includes a wide
range of the most commonly used finite elements (e.g. T3, T6, Q4,
Q8, Tetra4, Tetra10, Brick20, etc.). Node represents finite element
nodes, including corner and mid-side nodes. Along with element
and node representations, the data structure also stores some adja-
cency relationships between those entities.

Other entities, namely vertex, edge and facet, are implicitly repre-
sented. Thus, their representations are created and retrieved ‘‘on-
the-fly,’’ whenever access to them is requested by the client appli-
cation. Vertex represents an entity that is associated to a corner
node; edge is a one-dimensional entity that is bounded by two ver-
tices; and facet represents the interface between two elements, or
an element and the mesh boundary. In 2D, a facet corresponds to a
one-dimensional entity, whereas in 3D it corresponds to a two-
dimensional entity. Therefore, the facet entity represents a conve-
nient abstraction for a uniform treatment of operations acting on
inter-element interfaces, such as the insertion of cohesive ele-
ments. In TopS, entities are retrieved and accessed by means of
opaque handles returned by the topological data structure, rather
than the entity itself. This also provides the client application with
a transparent interface for the treatment of both explicit and impli-
cit entities.

In addition to vertices, edges and facets, TopS defines another
set of implicit entities that represent the uses of those entities by
adjacent elements: vertex-use, edge-use and facet-use. The use of a
facet by two elements is illustrated in Fig. 1. One facet-use is de-
fined for each element that shares the facet. Each entity-use (ver-
tex-use, edge-use or facet-use) is uniquely identified by the
element (Ei) to which it is related and a local number (id) which
identifies the entity within the fixed local element template:
(Ei, id). Each vertex, edge or facet implicit entity is represented by
one of its entity-uses. Analysis attributes can be attached to any
mesh entity represented by TopS, either explicit or implicit.
facet is represented by one of its uses (indicated by the ‘x’ mark).
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3.1.2. Dynamic insertion of cohesive elements
To the extent of the topological mesh representation, cohesive

elements are types of elements that consist of two facets. They
can be inserted at the interfaces between two adjacent elements
in the mesh (internal facets) in order to provide a representation
of fractured facets. Cohesive elements may contain nodes that
are shared by their two facets. Fig. 2 shows two cohesive elements
(CohE3 and CohT6) that match the facets of two bulk elements (T6
and Tet10, respectively). In TopS, cohesive elements are explicitly
represented and treated like any other regular element.

Dynamic insertion of cohesive elements follows the systematic
classification of topological facets proposed by Paulino et al. [13].
This scheme provides a consistent classification that can be uni-
formly employed for both 2D and 3D meshes. For a detailed
description of the algorithm for inserting a cohesive element into
a mesh we refer the reader to Ref. [13].

3.2. ParTopS: parallel fracture representation

A topological distributed mesh representation framework with
support for adaptive insertion of cohesive elements was proposed
in Ref. [10]. The framework, named ParTopS, is implemented as an
extension to the serial TopS topological data structure [11–13]. The
ParTopS framework, briefly reviewed in this section, will be used as
the topological support for the proposed parallel fracture simula-
tion scheme.

3.2.1. Distributed mesh representation
The distributed mesh representation consists of disjoint parti-

tions of the set of entities that make up the finite element mesh.
Each partition is assigned to exactly one (logical) processor, and
comprises a regular serial TopS mesh, with an additional communi-
cation layer (see Fig. 3). The communication layer is composed of
local copies of entities from remote partitions. It is constructed
around the nodes of the partition boundaries, and provides local
access to data from neighboring partitions that are necessary for
local computations.

In addition to providing access to remote entities, the commu-
nication layer is also utilized by the ParTopS framework in order to
facilitate the updating of mesh topology when cohesive elements
are concurrently inserted into multiple partitions. To this end,
two types of entities are defined: proxy and ghost, which are shown
in Fig. 3. Proxy nodes and elements are exact local copies of the cor-
responding entities from remote partitions; they are treated like
any other regular local entity and can be accessed or edited, and
can store analysis attributes. Ghost nodes are also local copies of re-
mote entities; however, unlike proxies, their direct adjacent enti-
ties are not represented. Any implicit entity (vertex, edge or facet
– and the corresponding entity-uses) is considered as a ghost if
all of its incident nodes are ghosts. Otherwise, either it is consid-
ered as a local or proxy entity, following the type of one adjacent
representative element. The ParTopS framework uses ghosts to de-
fine the boundaries of the communication layer, and to ensure lo-
Tet10 CohT6T6 CohE3

(a) (b)
Fig. 2. Examples of 2D (a) and 3D (b) bulk elements and the corresponding cohesive
elements.
cal topological consistency of each partition’s sub-mesh. The
separation of entities of the communication layer into proxies
and ghosts is central to parallel adaptive insertion of cohesive ele-
ments, which uses it in order to treat ambiguities that arise when
cohesive elements are inserted across partition boundaries.

Each local or proxy entity has its complete set of directly adja-
cent entities represented in the local mesh partition. Hence, com-
putations that depend on data from adjacent entities can be
performed locally, without the need for communication with re-
mote partitions, as long as the required data are up-to-date. This
makes the definition of proxy entities as editable entities conve-
nient to any situation when it is possible to reduce the amount
of inter-partition data synchronization by employing replicated lo-
cal computations, as exploited by the proposed parallel simulation
framework. Ghost entities, on the other hand, have an incomplete
local adjacency set, which makes computation at these entities
dependent on remote adjacent information. Therefore, most data
at ghost entities are updated from results of computations per-
formed at partitions containing a local or proxy representation of
the corresponding entities.

In ParTopS, each entity is owned by a single partition; the own-
er partition manages the so-called real entity and its attributes,
while other partitions may have proxy or ghost representations
of it. Each proxy or ghost entity has a reference to the correspond-
ing real entity, which is defined by the unique tuple (owner_parti-
tion,owner_handle), where owner_partition is the id of the partition
that owns the entity, and owner_handle is the local handle (opaque
identifier) of the entity in that partition.

3.2.2. Parallel insertion of cohesive elements
A topology-based algorithm for parallel adaptive insertion of

cohesive elements is also presented in Ref. [10]. The algorithm ex-
tends the serial version of Ref. [13] and works for both 2D and 3D
meshes with different types of elements. The so called symmetrical
topological operators are defined here. These operators produce
the same results in every partition that concurrently modifies a
mesh entity. They are employed in order to avoid the use of exclu-
sive access locks to entities and thus reduce inter-partition com-
munication to update mesh topology.

The application is responsible for the identification of newly
fractured facets, at which cohesive elements will be adaptively in-
serted. The list of fractured facets of each partition includes both
local and proxy entities, and must be consistent with respect to
all the partitions sharing a copy of the same facet. This means that
if a facet is fractured in a partition, then it is fractured in every par-
tition with a copy of it; otherwise it is not fractured in any
partition.

The parallel algorithm for inserting cohesive elements consists
of three phases. In the first phase, elements are inserted at frac-
tured facets of each partition using the serial algorithm of Ref.
[13]. Two constraints are included so that topological results ob-
tained are the same for every partition, regardless of the order in
which cohesive elements are inserted in each of them. At the end
of the first step, topology of local and proxy entities is consistent;
however references of newly created proxy entities (cohesive ele-
ments and duplicated nodes) to the corresponding real entities
need to be updated. Ghost entities also need to be updated.

The second phase computes the missing references of the newly
created proxy entities, which consist of the identifiers of their real
entities. Therefore, requests are sent to the neighboring partition
that owns each proxy entity. The remote partition then looks up
the entity corresponding to that proxy entity and sends the identi-
fier of the corresponding real entity back to the local partition,
which updates its proxy reference.

In the third phase, ghost nodes affected by nodal duplications in
remote partitions are updated. They either have their references to
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Fig. 3. A sample 2D mesh divided into two partitions. A communication layer is added to partition boundaries. Proxy and ghost entities are indicated in the figure. Each of
them has a reference to the corresponding real entity represented in a remote partition.

(a)

(b)

(c)
Fig. 4. The three phases of the parallel insertion of cohesive elements. (a) After phase 1, topology of local and proxy entities is consistent, regardless of the order of insertion of
cohesive elements in each partition. (b) Phase 2 updates references from proxy elements and nodes to the corresponding real entities. (c) After phase 3, the topology of ghost
nodes affected by nodal duplications is updated.
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real entities replaced or split into two or more new (ghost) nodes
in order to maintain mesh topology consistent. The three phases
of the algorithm are illustrated in Fig. 4.

4. Parallel dynamic fracture simulations

One of the goals of the current work is to provide a simple and
compact parallel programmer’s interface such that an existing se-
rial code can be efficiently parallelized with a minimum of addi-
tional effort, through reusing an existing fracture simulation code.
In this section, we describe the parallelization of dynamic
fracture simulation by means of a distributed topological rep-
resentation of the mesh. Our proposal is first presented based
on the parallelization of an existing serial application for
Mode I fracture. The solution is then extended to microbran-
ching simulations. The application code, originally imple-
mented on top of the TopS mesh representation [11–13], is
parallelized by the introduction of a small set of parallel func-
tion calls provided by the proposed topological framework
based in ParTopS [10]. Minor changes are required to the
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application in order to execute it in a distributed
environment.

The Application Programming Interface (API), exported to client
applications, follows the traditional Single Program Multiple Data
(SPMD) paradigm [14], in which the same program executes con-
currently for each partition of a data set. The API uses message
passing for inter-partition communication, and can be integrated
into an existing code based on the MPI [15] message passing stan-
dard. Internal implementation is done on top of Charm++ [16,17],
an object-oriented framework for parallel applications, which is
based on asynchronous message passing. However, although asyn-
chronous message passing paradigm possesses great potential for
performance improvements (through overlapping of communica-
tion and computation), it tends to increase code complexity con-
siderably. Hence, considering the intrinsic complexity of physics-
based numerical simulations, we instead provide a possibly less
efficient, but simple, easy-to-use functional interface. The pro-
posed distributed topological framework consists in a set of regular
serial functions for manipulating and accessing the local mesh par-
tition, plus a reduced set of parallel collective functions that encap-
sulate inter-partition communications. The collective functions are
concurrently called by every mesh partition. Thus, we aim to keep
the application coding as simple as possible, while still achieving
effective and scalable systems.

4.1. Synchronization requirements

In dynamic finite element analyses, the computation of a cur-
rent time step depends on the results of a previous time step. Like-
wise, intermediate computations within a time step also depend
on previously computed data. Data dependency limits the capacity
of parallelization, as dependent computations cannot be executed
concurrently. Hence, synchronization points are introduced into
the simulation whenever remote data required by a computation
are not available to the current mesh partition, which must wait
until the data are received from its neighbors. As a result, opportu-
nities for parallelization lay in the decomposition of the geometric
domain into separate pieces that can be processed independently
in between two consecutive synchronization points. For example,
when nodal stresses are computed in a time step, displacements
have been previously computed. Once displacements are up-to-
date, stresses can be computed concurrently by the mesh
partitions.

Every mesh partition corresponds to a sequential unit of com-
putation. In each partition, numerical computations are performed
mostly based on local data. However, simulation attributes associ-
ated to topological entities located on boundaries of neighboring
partitions must be maintained consistent among them.

The ParTopS communication layer provides local access to adja-
cent entities located at other partitions, as required by computa-
tions at entities on partition boundaries. In order to maintain
data consistent among mesh partitions, four approaches are evalu-
ated next. The first approach corresponds to the conventional
strategy, in which entities in the communication layer are consid-
ered as read-only, and results of computations are stored only at
local entities of a mesh partition. Since attributes of an entity are
exclusively updated by a single partition (the entity’s owner), race
conditions are avoided – this corresponds to an implicit exclusive
access locking mechanism [18]. However, entities in the communi-
cation layer must be synchronized with the corresponding remote
real entities whenever the entities are modified and are required
by local computations.

The other three approaches exploit the properties of the Par-
TopS communication layer, in order to reduce the number of syn-
chronization points required within a simulation time step. Hence,
entities in the communication layer are editable, and thus results
of computations are stored at them whenever it is convenient for
the client application. However, as data associated to a topological
entity can be modified concurrently by several different mesh par-
titions, we need to ensure that this happens seamlessly. To this
end, we propose the use of replicated computations among mesh
partitions, in a similar manner as the topological operators em-
ployed in the parallel insertion of cohesive elements (Section 3.2.2).
As a result, the number of synchronization points required by the
simulation can be reduced. The concept of symmetry of computa-
tions is discussed in Section 4.4.

For an analysis application, computational results are stored
as attributes associated to mesh entities. At each synchroniza-
tion point, attributes of topological entities in a mesh parti-
tion are synchronized with respect to the other partitions, in
order to keep them updated for computations that follow.
Note, however, that not every attribute of a topological entity
must be synchronized at each synchronization point, but only
those that require consistency for the next computation. Syn-
chronization can be postponed until data are actually needed,
or performed asynchronously while other independent compu-
tations are running. Nonetheless, the application must block
execution if the required data are not available at the ex-
pected time.

4.2. Structure of a serial fracture simulation

The basic algorithm of a serial numerical fracture simulation
[19,42] is summarized in Algorithm 1. The central differences
method (i.e. explicit method) [21] is utilized for time integration,
and the Park–Paulino–Roesler (PPR) constitutive model [20] is used
for the traction-separation relation of the extrinsic cohesive zone
model [22,23,20]. The structure of the serial simulation shown in
Algorithm 1 is used as a basis for the discussion of our proposal
for parallel simulation.

Algorithm 1. Basic structure of a serial dynamic fracture
simulation.

Initialize the finite element model

For each time step

1 - Compute current applied boundary conditions

2 - Check the insertion of new cohesive elements

2.1 - Compute nodal stresses

2.2 - Check fracture criteria along facets (e.g.

a stress-based criterion)

2.3 - Insert cohesive elements

2.4 - Update nodal masses

3 - Compute the internal force vector

4 - Compute the cohesive force vector

5 - Update nodal accelerations and velocities

6 - Update external forces

7 - Apply boundary conditions to nodes

8 - Update nodal displacements

Simulation starts just after the initialization of the finite ele-
ment model. At each time step, fractured facets must be identified,
and cohesive elements are inserted along them (item 2). In this
study, the fracture criteria is based on nodal stresses, which must
have been previously computed (item 2.1). Stresses are first calcu-
lated at the Gauss points of each volumetric element, from the
attributes of the element’s nodes. Then stresses at the Gauss points
are extrapolated to the nodes using shape functions. The resulting
stresses at a node are obtained by averaging contributions of all the
adjacent volumetric elements. Once stresses are up-to-date, inter-
nal facets (interfaces between volumetric elements) are checked
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at-node at-element elements-to-nodenodes-to-element

Fig. 5. The four basic computation patterns found in regular finite element
analyses. (a) at-node: the result computed at a node depends only on the node
itself; (b) at-element: the result of an element depends only on the element itself;
(c) nodes-to-element: the result at an element depends on the adjacent nodes; (d)
elements-to-node: the result at a node depends on the contributions of adjacent
elements.
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against a fracture criterion (item 2.2), and the ones for which the
criterion is met are marked as fractured in the current step. If there
are facets marked as fractured, cohesive elements are created on
demand and inserted along the fractured facets (item 2.3). The
attributes of duplicated nodes during the insertion of cohesive ele-
ments are copied from the original nodes inside callback functions
registered by the application and called by TopS after each nodal
duplication. The application is also notified of each cohesive ele-
ment inserted by a callback function, which is responsible for set-
ting up the element. Then, the attributes of the new cohesive
elements are calculated. In addition, when cohesive elements are
inserted, nodal masses are updated by summing up the contribu-
tions of adjacent volumetric elements (item 2.4).

After checking the insertion of cohesive elements (item 2), the
internal nodal forces (item 3) are computed by summing up the
contributions of the forces of the volumetric elements adjacent
to the nodes. Element contribution is based on element stiffness
and displacements of adjacent nodes. Then, the cohesive nodal
forces (item 4) are computed for the nodes adjacent to cohesive
elements. First, cohesive separations at the integration points are
calculated from the nodal displacements. Next, the cohesive trac-
tions and the corresponding cohesive nodal forces are computed
in conjunction with calculated separations and other element attri-
butes (e.g. material properties and history information associated
with the traction-separation relationship). Then, the resulting ele-
ment contribution is added to adjacent nodes. Finally (items 6 to
8), the remaining nodal attributes (accelerations, velocities, exter-
nal forces, boundary conditions and nodal displacements) are up-
dated based on attributes of the nodes themselves.

Note that the nodal displacements are generally computed at
the beginning of each time step for the explicit time integration
[19,42]. However, in this study, the nodal displacements are up-
dated at the end of each time step in order to reduce the number
of synchronizations in the parallel simulation. Thus, computed
stresses, internal forces, and cohesive forces are based on the nodal
displacement computed in the previous time step. In other words,
the nodal displacement computed at the end of the current time
step (n) is the nodal displacement field for the next time step
(n + 1).

4.3. Computation patterns

Before discussing the parallelization of fracture simulation, we
note that our basic types of computation patterns, regarding the
origin and destination of data associated to topological entities,
can be identified in regular finite element computations. We ana-
lyze each one of these patterns in light of parallelization. The iden-
tified computation patterns are here named: at-node, at-element,
nodes-to-element, and elements-to-node. Computations of types
at-node (Fig. 5(a)) and at-element (Fig. 5(b)) are self-contained at
the corresponding entities, thus depending only on data associated
to the entities which are modified. For example, in the central dif-
ference method, current nodal displacements are computed on the
basis of previous nodal information (e.g. displacement, velocity
and acceleration), which corresponds to the at-node pattern. For
the cohesive traction computation, separation history information
is required, and thus associated with the at-element pattern. These
computations can be naturally performed in parallel. In the nodes-
to-element pattern, element results are computed from the contri-
butions of the nodes adjacent to the element (Fig. 5(c)). For in-
stance, the stress computation at the Gauss points corresponds to
the nodes-to-element pattern. Once the input nodal attributes are
consistent, the computation can happen locally for the target ele-
ment. There is no writing conflict since each element is assigned
its corresponding resulted value. On the other hand, in the ele-
ments-to-node pattern (Fig. 5(d)), element contributions are added
to the results stored at adjacent nodes. The nodal stress computa-
tion is an example of the elements-to-node pattern. When an appro-
priate topological data structure is employed, the nodal results can
be computed consistently by traversing over the list of nodes in the
finite element mesh. For each node, the adjacent elements are vis-
ited and their contributions computed and added to the node.
However, this pattern is commonly, and more efficiently, imple-
mented by traversing over the list of elements in the mesh. Then,
the contribution of each element is computed and added to the
adjacent nodes based on the element connectivity information.
With this procedure, writing conflicts do arise, since different ele-
ments contribute to the value stored at a single node.

Complicated computations can be decomposed into smaller
computations that conform to the four patterns described above.
The classification of computations into a set of more basic patterns
provides a systematic and abstract way such that required syn-
chronization points can be easily identified in the numerical simu-
lation code. This is based solely on the computation structure,
regardless of the understanding of the details of the numerical
simulation.

4.4. Replicated symmetrical computation and stable iterators

For the purpose of the current work, a computation performed
in parallel is defined as symmetric if it produces the same results in
all partitions. Thus, using symmetric computation, we are able to
process local and associated proxy topological entities in parallel,
with no need for inter-partition communication to synchronize
the computed data. Therefore, we follow the same philosophy as
the symmetrical topological operations employed in the parallel
insertion of cohesive elements (Section 3.2.2), in which communi-
cation is replaced by replicated computations at the topological
entities (local, proxy or ghost) of every mesh partition.

However, floating-point operations (e.g. addition and multipli-
cation) are not associative [39], and thus different results can be
obtained due to the order in which operations are performed.
Hence, computations concurrently executed by different partitions
for the same topological entity can produce diverging results if the
order of floating-point operations is not identical for all of them.
Numerical differences, even small, can make binary decisions
(e.g. whether a facet has met the fracture criterion) to behave dif-
ferently in each partition. In addition, the differences can accumu-
late along a large number of time steps, affecting computational
results.

If a consistent ordering of floating-point operations can be en-
sured, then identical (symmetrical) results can be achieved for a
topological entity in every mesh partition, assuming that all pro-
cessors use the same floating-point number representation. To this
end, we first observe the symmetrical characteristics of the compu-
tation patterns discussed in the previous section. Computations of
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types at-node and at-element are naturally order-independent, and
thus symmetric, since only local access to the modified entity is re-
quired. In the nodes-to-element pattern, the results of an element
depend on the order in which contributions of adjacent nodes
are combined. However, this nodal ordering is imposed by the
fixed local topology of the element, which is consistent for every
mesh partition owing a copy of the element. Therefore, nodes-to-
element computations are also naturally symmetric. On the other
hand, in elements-to-node computations, the results of a node de-
pend on the order in which contributions of adjacent elements
are combined.

As discussed in Section 4.3, serial elements-to-node computa-
tions are traditionally performed by traversing the list of elements
and adding the contribution of each element to its nodes. In order
to parallelize these computations in a symmetrical way (with iden-
tical results obtained for every mesh partition), the elements must
be visited according to a globally consistent ordering in the distrib-
uted mesh. To this end, we employ an approach that is based on an
implicit global ordering of elements. Stable iterators for element tra-
versal are included into the distributed mesh representation of Par-
TopS such that ordered element traversals can be transparent to
the client application.

Implicit global element ordering is achieved by lexicographic
comparison of the tuples (owner_partition, owner_element_handle),
which uniquely identify any element in the distributed mesh. Thus,
elements are compared first by owner partition (owner_partition)
and, if they are in the same partition, by the local element handles
with respect to that partition (owner_element_handle). No explicit
global identifiers need to be assigned to elements, and correspond-
ing maintenance costs are avoided. In addition, inter-partition
communication in order to update the global ordering when the
mesh is modified is not required. This approach differs from others
[34], which employ 128-bit precision operators in order to ensure
the consistency of double precision (64-bit) computations at nodes
shared by neighboring mesh partitions.

At each partition, ParTopS stores two distinct arrays of ele-
ments: the first array stores the local elements, and the second
stores the proxy elements. In order to implement a stable element
iterator, the proxy-element array is kept ordered by an element
global identifier (the tuple [owner_partition, owner_element_han-
dle]). The local-element array is implicitly ordered, as element han-
dles correspond directly to locations in the array. The stable
iterator then traverses the elements in the partition in the follow-
ing order: each element in the proxy-element array is visited as
long as its corresponding owner partition identifier is less than
the identifier of the current partition. Then, the local-element array
is traversed and, finally, the proxy-element array traversal is
resumed.

Different ordered arrays and stable iterators can be created for
each distinct group of elements. In our fracture simulations, sepa-
rate iterators were used for volumetric and cohesive elements. The
main advantage of this is that the volumetric array does not need
to be reordered whenever cohesive elements are inserted into the
mesh in this study. This is because elements-to-node computations
of volumetric elements are performed separately from the compu-
tations of cohesive elements. As the number of cohesive elements
is usually much smaller than the number of volumetric elements,
the reordering effort during the fracture simulations tends to be
negligible.

Based on distributed mesh representation provided by ParTopS,
symmetrical computations can be done for both local and proxy
entities for all identified computation patterns. Ghost entities are
synchronized with results computed at the corresponding remote
entities (of the local or proxy type). Only the pattern at-node can
be performed symmetrically on ghost nodes.
4.5. Distributed attribute representation

The TopS serial mesh representation allows a client application
to attach analysis attributes to any type of topological entity in a
model, including implicitly represented entities (i.e. facets, edges
and vertices). The attributes are linked to the unique identifiers
of the topological entities to which they are attached, and stored
as generic pointers to the memory locations where the actual data
can be found. The identifier of an implicit entity is related to the
adjacent element that is used to represent the entity, and so this
may change if elements are removed from the mesh. However,
the data structure is capable of handling such cases, which are dis-
cussed in Ref. [12]. For the purpose of the current discussion,
though, we assume that no element will be removed.

In order to facilitate attribute management by the client appli-
cation, the original serial attribute representation was extended
with attribute sets that are allocated and managed by the topolog-
ical framework. Two types of sets are defined: dense and sparse.
Dense attributes are optimized for representing data attached to
all (or almost all) the entities of a given type. This includes the sim-
ulation state stored at every node and element of the model. Sparse
attributes, on the other hand, are intended for representation of
data associated to smaller sets of entities; an example is boundary
conditions associated to boundary nodes.

Dense attributes may be attached to explicit entities (nodes and
elements); only one different set is created for each type of ele-
ment (e.g. T3, TET4, T3_PROXY, TET4_PROXY) or node (e.g. LOCAL,
PROXY, GHOST). Implementation consists of generic dynamic ar-
rays indexed by entity identifiers, constrained to the entity type
to which each array corresponds. Attribute arrays are automati-
cally resized by the topological framework whenever elements or
nodes are inserted into or removed from the mesh. Several sets
can be attached to the same type of entity, and each set has a un-
ique identifier, which is used by the application in order to refer to
it. A callback function for packing/unpacking attributes into/from a
stream of bytes is supplied by the application so that attributes can
be serialized and transmitted over a network. Since array alloca-
tion is managed by the topological framework, the application
must provide the attribute storage size during array creation. An
attribute may be either a pointer to a memory location or the ac-
tual data representation. The application is responsible to fill in
each position of the array with an appropriate attribute to the cor-
responding entity; a default initialization function may also be pro-
vided by the application in order to set the initial attribute values.

Sparse attributes can be attached to any type of entity, either
explicit or implicit. Like dense attributes, different sets are created
for each type of element, node or implicit entity. Implementation
consists of ordinary dynamic associative hash tables indexed by
entity identifiers.

Attribute sets are implemented at the level of the TopS serial
data structure. Construction of distributed sets is done by means
of an additional collective function, called at every processor simul-
taneously. The collective function delegates to local serial functions
at the mesh partitions in order to create local attribute sets for the
requested entity type. The same unique global identifier is returned
by every partition, so it can be passed around without the need for
explicit mapping. The attribute sets allow one to write a serial or
parallel numerical simulation code under the same common inter-
face, with a few extensions for parallel computations. These exten-
sions consist of support for proxy and ghost entities and collective
functions for synchronizing attributes of such entities. In order to
synchronize an attribute set attached to ghost or proxy entities, a
collective function SyncAttrib(entity_type, attrib_id),
which parameters are the type of the entity to which the attribute
is attached (entity_type) and the global attribute identifier with
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respect to that type (attrib_id), is called at every partition.
The current partition determines its neighbors that own such
entities and the local handles of the elements at them. Messages
requesting the attribute’s data are sent to all the neighboring
partitions, which then access the local elements and reply with
the requested values.

4.6. Parallel functions exported to the numerical application

A brief description of the main set of functions of the parallel
Application Programming Interface (API) provided by the proposed
topological framework is presented:

void topParInit();

TopParModel topParModel_Create();

int topParModel_ReadMesh(TopParModel model,

char⁄ format, char⁄ meshfile, char⁄ partfile);
TopModel⁄ topParModel_GetLocalMesh(
TopParModel model);

TopAttribId topParModel_CreateNodeDenseAttrib(

TopParModel model, size_t sizeof_attrib);

void⁄ topModel_GetNodeDenseAttribAt(
TopModel⁄ mesh, TopAttribId attribid,

TopNode node);

void topParModel_SyncProxyNodeDenseAttrib(

TopParModel model, TopAttribId attribid);

void topParModel_SyncGhostNodeDenseAttrib(

TopParModel model, TopAttribId attribid);

void topParModel_SyncFacets(

TopParModel model, TopFacet⁄ facets);
void topParModel_InsertCohesiveAtFacets(

TopParModel model, ElemType type, TopFacet⁄
facets);

The collective function topParInit, which is concurrently
called by every mesh partition at the beginning of the applica-
tion execution, initializes the support for the distributed mesh
representation. The collective function Create (the topParModel
prefix is omitted hereafter) creates a new empty distributed fi-
nite element model and returns the identifier of the created
model (TopParModel). The utility collective function Read-

Mesh loads a distributed mesh from a pair of input files
(meshfile and partfile, containing the original mesh and
mesh partition description, respectively) in a given file format
(format) into the distributed model (model). The local func-
tion GetLocalMesh returns a pointer to the local mesh of
the current partition, represented by the serial TopS topological
data structure along with the parallel extensions that make up
ParTopS. The collective function CreateNodeDenseAttrib cre-
ates a new attribute set that is associated to every node in the
distributed mesh. The function returns the identifier of the cre-
ated attribute set (TopAttribId), which is the same for every
mesh partition, and can be used in order to access the corre-
sponding attribute of a node by calling the local function
GetNodeDenseAttribAt. The function returns a pointer
(void⁄) to the memory address corresponding to the node’s
(node) data in the local mesh (mesh). The functions SyncPr-

oxyNodeDenseAttrib and SyncGhostNodeDenseAttrib syn-
chronize the attributes of proxy and ghost nodes,
respectively, with regard to an attribute (attribid) associated
to the corresponding remote nodes. The collective function
SyncFacets synchronizes local lists of fractured facets (fac-
ets) in each mesh partition with their neighboring partitions.
Finally, the interface to the parallel adaptive insertion of
cohesive elements is provided by the collective function
InsertCohesiveAtFacets, which receives as parameters the
type of the elements to be inserted (type) and the list of frac-
tured facets of the current partition (facets), including both
local and proxy facets. In order to parallelize the insertion of
cohesive elements, the application replaces the serial function
with the parallel version, which has a similar signature. The
collective call does not return the list of inserted cohesive ele-
ments; instead the application is notified for each element in-
serted and duplicated nodes (local, proxy or ghost) through
registered callback functions. The callback interface is mostly
the same for both the serial and parallel implementations.
Upon notification, the application can set the attributes of
the new nodes and elements.

4.7. Structure of the parallel simulation

The structure of the parallel simulation is based on the syn-
chronization requirements and the computation patterns dis-
cussed in the previous sections. In a general sense, the parallel
code corresponds to the original serial code concurrently exe-
cuted on every mesh partition, and with a few additional parallel
collective functions for the synchronization among mesh parti-
tions. The parallel numerical application is described next, consid-
ering four different approaches for synchronization, as first
mentioned in Section 4.1.

4.7.1. Parallel approach based on computations at local entities only
In the parallel simulation structure shown in Algorithm 2, the

results of concurrent numerical computations are stored only at lo-
cal entities in each mesh partition. This corresponds to the first ap-
proach discussed in Section 4.1, and is equivalent to the
conventional strategy based on the implicit use of exclusive access
locks at mesh entities. Entities in the communication layer (proxies
and ghosts) are considered as read-only entities, thus serving to
the only purpose of providing the data required by local computa-
tions near partition boundaries. Data consistency of proxy and
ghost entities is ensured by attribute synchronization with neigh-
boring partitions. Synchronization points are emphasized in bold
in Algorithm 2.

Algorithm 2. Basic structure of the parallel fracture
simulation, considering an approach based on computations
on local entities only.

Initialize the finite element model

For each time step

1 - Compute current applied boundary conditions

2 - Check the insertion of new cohesive elements

2.1 - Compute nodal stresses

A1. Synchronize attributes of proxy nodes

2.2 - Check fracture criteria along facets

A2. Synchronize local sets of fractured facets

2.3 - Insert cohesive elements

2.4 - Update nodal masses

3 - Compute the internal force vector

4 - Compute the cohesive force vector

A3. Synchronize attributes of proxy cohesive

elements

5 - Update nodal accelerations and velocities

6 - Update external forces

7 - Apply boundary conditions to nodes

8 - Update nodal displacements

A4. Synchronize attributes of proxy nodes

A5. Synchronize attributes of ghost nodes
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At the beginning of each time step, it is assumed that all the
partitions of the finite element model are consistent. During time
step execution, however, attributes of nodes and elements are al-
tered by intermediate computations, which happen independently
on each partition. Those attributes must be turned consistent in or-
der to be used by subsequent computations. The synchronization
requirements for maintaining data consistency among mesh parti-
tions are analyzed next, based on the basic structure of the serial
numerical simulation described in Section 4.2.

Computation of nodal stresses (item 2.1) consists of two
sequential stages. First, for each volumetric element, the attributes
of adjacent nodes are temporarily copied to the element, and stres-
ses are calculated at the Gauss points within an element. Next, the
nodal stresses are extrapolated from the Gauss points and are
added to the adjacent nodes in the current partition, but only local
nodes are updated. Note, however, that a local node can be adja-
cent to both local and proxy elements; thus contributions corre-
sponding to those elements must be computed. As a proxy
element can be adjacent to either local, proxy or ghost nodes, the
attributes of those entities must be consistent prior to the begin-
ning of the stress computation. This is ensured by the synchroniza-
tion of proxy and ghost nodes that takes place at the end of the
previous time step (items A4 and A5), just after the computation
of nodal displacements.

Fracture determination (item 2.2) has to be consistently done
for every local facet of the current mesh partition. However, local
facets may have incident proxy nodes. For that reason, proxy nodes
must be synchronized (item A1) before fracture criterion evalua-
tion. Insertion of cohesive elements, when needed, is performed
by a parallel collective function with well-defined inputs and out-
puts (Section 4.6), which requires that proxy facets are provided in
addition to the local ones. Therefore, the local set of fractured fac-
ets of the current partition is synchronized with neighboring parti-
tions (item A2). After inserting cohesive elements (item 2.3), the
global mesh topology and attributes that correspond to the af-
fected entities are consistent.

If cohesive elements are inserted, nodal masses (item 2.4) are
updated from the contributions of adjacent volumetric elements.
The element mass matrix does not change during the simulation,
and subsequent computations in a time step do not require, as in-
put, the masses of either proxy or ghost nodes. Hence, synchroni-
zation of nodal attributes is not needed either before or after this
computation.

The internal force vector (item 3) is computed in two stages,
in a similar way as the nodal stresses. For each volumetric ele-
ment, attributes of its adjacent nodes are temporarily copied to
the element in order to be combined with other additional ele-
ment attributes. Then, the element’s contribution is added to
the adjacent local nodes. Displacements are the only nodal
attributes used in this computation. As they have not been al-
tered in the current time step to this point, synchronization
of proxy or ghost entities is not required in order to compute
internal forces.

Computation of the cohesive forces (item 4) can be decomposed
into three separate parts. In the first one, for each cohesive ele-
ment, temporary attributes (e.g. cohesive separations) are com-
puted at the element from adjacent nodal data (e.g.
displacements). In the second part, element attributes (e.g. history
information) are updated and combined with other temporary
attributes, and the results (e.g. cohesive tractions) are stored back
at local elements. Finally, the element force contribution is added
to each adjacent node. This computation affects both local cohesive
elements and local nodes adjacent to them. Since local nodes can
be adjacent to either local or proxy elements, and those elements,
in turn, to either local, proxy or ghost nodes, computation will
depend on the attributes associated to those entities. However,
as input nodal attributes have not changed to this point in the cur-
rent time step, we only need to synchronize the attributes of cohe-
sive elements (item A3), such that they are up-to-date for the next
time step.

The remaining computations (items 5 to 8) depend only on the
attributes of the nodes that they modify. Thus, they are self-con-
tained and do not depend on synchronization with neighboring
partitions. At the end of the time step, attributes of proxy and ghost
entities are synchronized (items A4 and A5) such that they are con-
sistent for the next time step.

Because element and node attributes are modified by a single
mesh partition (the one which owns the entity), numerical diver-
gences between neighboring partitions are naturally avoided. Con-
versely, attributes of proxy and ghost entities must be
synchronized accordingly whenever the entities are modified.

4.7.2. Parallel approach based on replicated computations
In this section, replication of numerical computations at ele-

ments and nodes in the communication layer of each mesh parti-
tion is utilized to reduce the number of attribute synchronization
points needed. In this scenario, attributes of topological entities
in the communication layer can be edited and results of computa-
tions are stored at them whenever it is convenient for the numer-
ical application. Next, the structure of the parallel simulation of
Section 4.7.1 is revisited (see Algorithm 3), and the computation
patterns found are analyzed.

Algorithm 3. Basic structure of the parallel numerical
simulation based on replicated computations. Attributes of
proxy nodes are sporadically synchronized, at fixed intervals
of n time steps.

Initialize the finite element model

For each time step

1 - Compute current applied boundary conditions

2 - Check the insertion of new cohesive elements

2.1 - Compute nodal stresses

If the current time step is multiple of n

A1. Synchronize attributes of proxy nodes

2.2 - Check fracture criteria along facets

A2. Synchronize local sets of fractured facets

2.3 - Insert cohesive elements

2.4 - Update nodal masses

3 - Compute the internal force vector

4 - Compute the cohesive force vector

If the current time step is multiple of n

A3. Synchronize attributes of proxy cohesive

elements

A4. Synchronize attributes of ghost nodes

5 - Update nodal accelerations and velocities

6 - Update external forces

7 - Apply boundary conditions to nodes

8 - Update nodal displacements

At first, the results of replicated computations are treated as if
they were identical for every mesh partition, but no special care
is taken to ensure a stable order in floating-point operations. In ele-
ments-to-node computations, this can yield slightly different re-
sults for different partitions. Thus, to avoid the accumulation of
numerical differences along a large number of time steps, numer-
ical attributes of affected topological entities are synchronized
sporadically.



154 R. Espinha et al. / Comput. Methods Appl. Mech. Engrg. 266 (2013) 144–161
In nodal stress computation (item 2.1), temporary results are
first computed at each volumetric element from the attributes
of the adjacent nodes, which corresponds to the nodes-to-element
computation pattern. Therefore, the temporary element results
are naturally symmetrical, being consistent among different mesh
partitions. Next, the element contribution is added to the adjacent
nodes, as in the elements-to-node computation pattern. In this
case, the application calculates nodal results in the traditional
way, by traversing the elements of the current mesh partition
and then adding the contribution of each element to its adjacent
nodes.

Since no global ordering is imposed to element traversals,
slightly different numerical results can be obtained for different
mesh partitions, due to different local orders of floating-point
operations. This requires that proxy entities are sporadically syn-
chronized in order to maintain data consistency among partitions
(item A1). If attribute synchronization were completely removed,
numerical divergences would propagate along a large number of
time steps. On the other hand, numerical differences that do not
significantly affect simulation results could be tolerated. Therefore,
in order to remove synchronization costs from the simulation, but
mitigate the accumulation of numerical divergences, synchroniza-
tion of proxy entities is done at fixed intervals of n time steps. In
our tests, numerical simulations were performed with synchroni-
zation intervals of up to 100 time steps, with no significant differ-
ences in the achieved results compared to the original results. We
observe that, in the numerical simulations considered here, nodal
stresses are only required for the determination of fractured facets.
Therefore, propagation of numerical inaccuracies is limited to this
scope, though divergences on the internal force vector, for exam-
ple, can propagate longer.

Determination of fractured facets (item 2.2) can be classified by
the nodes-to-element computation pattern. Thus, assuming that the
nodes of each facet are consistent, the computation is naturally
symmetric. As a result, synchronization of local sets of fractured
facets could be removed if fracture determination in each mesh
partition also includes proxy entities. However, numerical diver-
gences in stress computations, even small, can affect the binary
decision of whether the fracture criterion has been met, causing
the sets of fractured facets to become inconsistent among different
partitions. Hence, in order to ensure data consistency, fracture
determination remains based on local facets only, followed by a
synchronization of the local facet sets (item A2).

Like nodal stresses, the internal force vector (item 3) is com-
puted in two stages, which correspond to the nodes-to-element
and elements-to-node computation patterns respectively. It is di-
rectly followed by the cohesive force vector (item 4), which can
be decomposed into nodes-to-element, at-element, and elements-
to-node computations. Nodes-to-element and at-element are sym-
metrical and depend on nodal attributes (e.g. materials and dis-
placement), which remain unchanged to this point in the current
time step. At-element computations modify and depend on attri-
butes of cohesive elements that were computed in the previous
time step (e.g. history information). Since this type of computation
is symmetric, the results do not need to be synchronized in order
to ensure consistency toward the next time step. Finally, ele-
ments-to-node computations are based on the results of the other
two previous computations, and thus depend on consistent data.
The results of elements-to-node computations of the internal and
cohesive force vectors are treated in a similar manner as nodal
stresses. Thus, attributes of proxy nodes are also sporadically syn-
chronized at fixed intervals of n time steps. Only ghost nodes are
synchronized every time step, so they can be used by the following
computations (items A3 and A4).
The remaining computations (items 5 to 8) follow the at-node
pattern. Hence, they are naturally symmetric and do not require
additional synchronization.

4.7.3. Parallel approach based on symmetrical computations
The sporadic synchronization of proxy nodes, employed by the

previous parallel approach, can be removed from the numerical
application. This is accomplished by replacing regular iterators
by the corresponding stable iterators for the traversal of elements
in elements-to-node computations (Section 4.4). As a result, nodal
stresses, and internal and cohesive forces are computed in a sym-
metrical fashion, thus yielding numerically consistent results for
local and proxy nodes for different mesh partitions, with no in-
ter-partition synchronization. With fracture determination per-
formed for both local and proxy facets, the synchronization of
local sets of fractured facets can also be removed. On the other
hand, proxy facets may be adjacent to ghost nodes and thus those
nodes must also be synchronized before the fracture determina-
tion. The structure of the parallel code based on this approach is
shown in Algorithm 4. It only requires the synchronization of ghost
nodes (items A1 and A2). One advantage of reducing the number of
synchronization points using symmetrical computations is the
structure of the parallel simulation is simplified.

Algorithm 4. Basic structure of the parallel fracture
simulation using ‘‘symmetrical computations’’ based on stable
element iterators.

Initialize the finite element model

For each time step

1 - Compute current applied boundary conditions

2 - Check the insertion of new cohesive elements

2.1 - Compute nodal stresses

A1. Synchronize attributes of ghost nodes

2.2 - Check fracture criteria along facets

2.3 - Insert cohesive elements

2.4 - Update nodal masses

3 - Compute the internal force vector

4 - Compute the cohesive force vector

A2. Synchronize attributes of ghost nodes

5 - Update nodal accelerations and velocities

6 - Update external forces

7 - Apply boundary conditions to nodes

8 - Update nodal displacements
4.7.4. Mixed parallel approach
By employing symmetrical computations, the number of attri-

bute synchronization points is reduced with respect to the conven-
tional approach based on local computations. Sometimes, though, a
combined strategy may become more advantageous. Regarding the
present numerical fracture simulation, synchronization of local
sets of fractured facets is not necessary when computations are
symmetrical. This requires that attributes of ghost nodes be syn-
chronized before the fracture criterion can be evaluated. However,
a substantially smaller amount of data is expected to be exchanged
by neighboring partitions during synchronization of facet sets
compared with attributes of ghost nodes. Hence, in order to reduce
data transferring among partitions, we propose a mixed approach.
We employ symmetrical operations but maintain fracture determi-
nation for local facets only, with a subsequent synchronization of
the corresponding fractured facet sets. The updated structure of
this parallel simulation is presented in Algorithm 5.



Table 1
Total time for parallel insertion of cohesive elements.

Grid size # Elements (millions) # Processors Total time (s)

50 � 50 � 50 0.75 1 (serial) 16.59
100 � 100 � 100 6.00 8 24.30
200 � 200 � 200 48.00 64 28.12
400 � 400 � 400 384.00 512 29.24
450 � 450 � 450 546.75 729 31.41
500 � 500 � 500 750.00 1000 31.74
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Algorithm 5. Basic structure of the parallel fracture
simulation based on the mixed approach, with stable iterators
and synchronization of local sets of fractured facets.

Initialize the finite element model

For each time step

1 - Compute current applied boundary conditions

2 - Check the insertion of new cohesive elements

2.1 - Compute nodal stresses

2.2 - Check fracture criteria along facets

A1. Synchronize local sets of fractured facets

2.3 - Insert cohesive elements

2.4 - Update nodal masses

3 - Compute the internal force vector

4 - Compute the cohesive force vector

5 - Update nodal accelerations and velocities

6 - Update external forces

7 - Apply boundary conditions to nodes

8 - Update nodal displacements

A2. Synchronize attributes of ghost nodes
0

5

Number of Processors

Fig. 7. Total execution time for 50 steps of parallel insertion of cohesive elements
into the tetrahedral grid versus the number of processor cores utilized. Mesh
discretization increases proportionally with the number of processors.
5. Computational experiments

In order to assess the correctness, efficiency, and scalability of
parallel simulations based on the proposed topological framework,
we have performed a set of computational experiments. The exper-
iments were executed on Intel 64 Cluster Abe, located at the Na-
tional Center for Supercomputing Applications (NCSA). Each node
of the cluster is composed of two 2.33 GHz quad core Intel 64 pro-
cessors (8 cores per node), with 1 GB RAM per core. Nodes are
interconnected through an InfiniBand network, with a Red Hat
Enterprise Linux 4 (2.6.18), using gcc v.3.4.6 compiler. Exactly
one mesh partition is assigned to each processor core.

5.1. Scalability of cohesive element insertion

The following experiment demonstrates the scalability of the
parallel topological framework regarding the insertion of cohesive
elements. For this purpose, the computations were decoupled from
the mechanics analysis. This complements Ref. [10], which sug-
gests that the ParTopS framework should scale well, but does not
provide results for large mesh sizes and number of processors.
The experiment measures the ability of the parallel framework to
tackle larger problems efficiently, by varying the number of pro-
cessors with mesh size in order to maintain the same level of effi-
ciency. For the ideal case, execution time is expected to remain
constant if the number of processors increases proportionally with
Fig. 6. Sample tetrahedral grid used in the computational experiment to evaluate
scalability of cohesive element insertion. Different mesh discretizations are
employed.
the number of elements. In this experiment, we have used the sam-
ple three-dimensional grid of Fig. 6. Mesh partition size corre-
sponds to approximately 50 � 50 � 50 hexahedral cells
decomposed into six linear tetrahedral elements (Tet4) each, or
750,000 elements per partition. Cohesive elements are incremen-
tally inserted at approximately 50% of the internal facets, along
50 execution steps. At each step, 1% of the facets are randomly cho-
sen and cohesive elements inserted at them.

Results for the various mesh sizes and numbers of processors
are summarized in Table 1, and the total execution times versus
the number of processors are plotted in Fig. 7. For a large number
of processors, the total times show a constant trend, with reduced
variations compared with the use of a small number of processors.
Consequently, the parallel algorithm to insert cohesive elements
presents the expected scalability results. The comparison with
the serial simulation shows the small parallel overhead introduced
to the original application. For 1000 processors, the execution time
is approximately 1.9 times the serial time; however, the problem
size that can be solved is approximately 1000 times larger.

5.2. Parallel fracture simulations

Efficiency, scalability and generality of fracture simulation were
evaluated by a set of computational tests on finite element models
for various mesh sizes and number of partitions. For simplicity, a
Mode I fracture test is employed with a predefined crack path,
and the geometry and boundary conditions of the models are illus-
trated in Fig. 8. Additionally, a microbranching fracture test is also
performed to demonstrate the generality of the proposed frame-
work. Within a rectangular PMMA plate, an initial strain (e0) of
0.036 and 0.043 is applied for a predefined crack path example
and a microbranching fracture test, respectively. Such geometry
and boundary conditions are motivated by the original experiment
work by Sharon and Fineberg [40]. Both 2D and 3D models are
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Fig. 8. Geometries of the 2D (a) and 3D (b) models used in the computational
simulation experiments.

Table 3
Execution times, in seconds, for 10,000 simulation steps considering the 2D model.
The mesh is discretized into 400 � 40 regular quadrilaterals, each divided into four T6
triangular elements (i.e. total of 64,000 elements). Total time is the sum of all the
individual time steps. The execution time of a simulation step corresponds to the time
required by numerical computations plus the time for synchronization of attributes
and fractured facets, and insertion of cohesive elements.

# Processors Time (seconds)

Synchronization Cohesive insertion Total

1 (serial) 0.00 0.02 6333.35
2 18.70 0.80 3572.79
4 21.12 4.22 1948.94
8 25.87 6.87 1402.29
16 32.33 11.08 659.06

Table 4
Performance metrics for the numerical simulations of the 2D model. The mesh is
discretized into 400 � 40 regular quadrilaterals, each divided into four T6 triangular
elements (i.e. total of 64,000 elements). Speedup is defined as the ratio between
sequential and parallel execution times, and efficiency (or processor utilization) is the
speedup divided by the number of processors [26]. The percentage of the total time
spent in attribute synchronization is also presented.

# Processors Metric

Speedup Efficiency Synchronization (% total time)

1 (serial) – – 0.00
2 1.77 0.89 0.52
4 3.25 0.81 1.08
8 4.52 0.56 1.84
16 9.61 0.60 4.90
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tested. The 2D model is discretized into quadratic triangular ele-
ments (T6) while the 3D model is discretized into linear tetrahe-
dron elements (Tet4). Mesh partitions are created by using the
METIS mesh partitioner [24,25]. In addition, for the 2D predefined
crack path model, the total simulated time is 2 ls, in 10,000 steps
of 0.2 ns. For the 3D predefined crack path model, the total simu-
lated time is 2.4 ls, in 12,000 steps of 0.2 ns. For the microbran-
ching example, the total simulated time is 22 ls, in 220,000
steps of 0.1 ns. Note that the selection of the mesh sizes and time
step sizes is based on the work by Zhang et al. [1] and Park et al.
[43].

Material properties are obtained from Ref. [1,30,43]. For elastic
material properties of PMMA, elastic modulus is 3.24 GPa, Pois-
son’s ratio is 0.35, and density is 1190 kg/m3. For the Mode I frac-
ture parameters of the predefined crack path examples, the
fracture energy (/n) and the cohesive strength (rmax) are 352 N/
m and 324 MPa, respectively, as in Ref [43]. For the microbran-
ching example, the fracture energy (/n) and the cohesive strength
(rmax) are 352.3 N/m and 129.6 MPa, respectively, which corre-
sponds to the properties of PMMA in Ref [1,30]. The Mode II frac-
ture parameters are assumed to be the same as the Mode I
parameters. Additionally, the PPR model [20] is utilized to define
the cohesive traction-separation relationship. In the PPR model,
the shape parameter (a) is selected as 2, which leads to the linear
softening.

Initially null velocities and accelerations (~v ¼ 0, ~a ¼ 0), and an
initial strain (e0) are imposed to nodes along the upper and lower
model boundaries. The corresponding initial nodal displacements
Table 2
Execution times, in seconds, for 12,000 simulation steps of the 3D m
processor cores (1 partition per core), using different approaches for at

Parallel approach

Local computations (conventional approach)
Replicated computations (with sporadic synchronization of proxy
Replicated symmetrical computations (with stable iterators)
Mixed approach (symmetrical and local computations)
vary proportionally along the vertical distance from the center of
the model. For cohesive fracture simulation, cohesive elements
are inserted when the averaged normal stress along a facet is
greater than the normal cohesive strength (i.e. a stress-based crite-
rion). Note that the criterion is checked at every 10 simulation
steps.

5.2.1. Comparison of parallel approaches
This computational experiment compares the four parallel ap-

proaches for attribute synchronization discussed in Section 4.7.
To this end, the 3D model was discretized into a 400 � 40 � 40 grid
of regular hexahedral cells, and each cell is divided into 6 linear
tetrahedral elements (i.e. total of 3,840,000 elements). The tetrahe-
dral mesh was decomposed into 32 partitions, and 12,000 time
steps were simulated.

Table 2 shows the computational times corresponding to the
synchronization of numerical attributes and fractured facets re-
quested by the application, for each parallel approach. Synchroni-
zation times for the approaches with replicated computations
were substantially lower than the conventional approach based
on local computations, as a consequence of the reduced number
of synchronization points of the parallel application. The best
achieved performance corresponds to the mixed approach, which
odel discretized into 3,840,000 linear tetrahedra (Tet4), on 32
tribute synchronization.

Time (seconds)
Synchronization (attributes + facets)

1516.39
nodes) 1113.72

1120.04
1104.01
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Fig. 9. Total execution times of the simulation of the 2D model versus the number
of processors utilized. The analysis attribute synchronization times are also plotted.
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requires only two synchronization points. In this case, synchroni-
zation times were reduced by approximately 27% compared with
the local computation approach. The approach based on symmetri-
cal computations with stable iterators (Section 4.7.3) resulted in
synchronization times slightly greater than the mixed approach,
due to the higher cost of synchronization of ghost nodes compared
with the fractured facet sets. The approach based on replicated
computations with sporadic synchronization of proxy nodes (Sec-
tion 4.7.2) showed synchronization times very close to the mixed
approach. Both approaches have an equivalent number of synchro-
nization points, when the residual cost of sporadic proxy synchro-
nizations is negligible.
Fig. 10. (a) Mesh partitioning of the 2D model for 16 processors; (b) numeric
5.2.2. Parallel performance compared with serial simulations
This experiment compares the performance of parallel simula-

tions with the serial version, for an increasing number of proces-
sors. Hence, mesh size is fixed, whereas the number of
processors varies. In order to have the simulation also executed
on a single processor, the 2D model was employed. The mesh is
discretized into 400 � 40 regular quadrilaterals, each divided into
four T6 triangular elements (i.e. total of 64,000 elements). The
number of simulation steps is equal to 10,000. The mixed parallel
approach was used in this experiment and in the others that
follow.

The achieved results are presented in Table 3, and some perfor-
mance metrics are shown in Table 4. In Fig. 9, we plot both the total
execution time and the time spent on attribute synchronization
with respect to the number of processors. For the mesh discretiza-
tion utilized, the most significant performance gains of the parallel
simulation with regard to the serial version occur on up to four
processors in this example (e.g. more than 80% of efficiency). An in-
crease in the number of processors does not yield the same propor-
tional benefits. This happens because communication costs, which
are dominated by attribute synchronization, tend to increase,
while less computation is done per processor within each simula-
tion step. The mesh partitioning for 16 processors and correspond-
ing numerical results for ry are shown in Fig. 10.

5.2.3. Microbranching fracture simulations
Results of two-dimensional parallel microbranching fracture

simulation [1,20] are shown in Fig. 11. Fracture propagation is
based on mixed-mode of fracture and the extrinsic cohesive zone
model [22,23,20]. The constitutive model used is PPR [20]. This
type of simulation allows for complex fracture patterns as the ones
observed in the experiment by Sharon and Fineberg [40], which
demonstrates that the proposed parallel approach is general en-
ough for both fracture and microbranching simulations.
al results, obtained at steps 100, 2500, 5000, 7500 and 10,000 (Sy � ry).



Fig. 11. Fracture evolution over time, at time steps: (a) 20,000 (2 ls); (b) 80,000
(8 ls); (c) 220,000 (22 ls).

Fig. 12. A region around the main crack path is enlarged to show microbranching
phenomena.

Fig. 13. The finite element model decomposed into 128 partitions.

Table 5
Execution times, in seconds, for 12,000 simulation steps of the 3D model. The mesh is
discretized into 400 � 40 � 40 hexahedra, each hexahedron is divided into 6 linear
tetrahedral elements (i.e. total of 3,840,000 elements). The total time is the sum of all
the time steps. The time of each step corresponds to the numerical computation time
plus the time for synchronization of attributes and fractured facets, and insertion of
cohesive elements.

# Processors Time (seconds)

Synchronization Cohesiveinsertion Total

32 1104.01 271.22 24470.57
64 955.50 214.14 13311.10

128 914.96 298.81 7481.55
256 536.10 136.97 4124.10
512 358.67 105.63 2365.07

Table 6
Performance metrics for the numerical simulations of the 3D model. The mesh is
discretized into 400 � 40 � 40 hexahedra, each hexahedron is divided into 6 linear
tetrahedral elements (i.e. total of 3,840,000 elements). Relative speedup is the ratio
between current parallel execution time and initial simulation on 32 processors.
Efficiency (or processor utilization) is defined as the speedup divided by the number of
processors [26]. The percentage of the total time spent in attribute synchronization is
also presented.

# Processors Metric
Relative
speedup

Efficiency Synchronization
(% total time)

32 – – 4.51
64 1.84 0.92 7.18

128 3.27 0.82 12.23
256 5.93 0.74 13.00
512 10.35 0.65 15.17
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Fig. 14. Total execution times of the simulation of the 3D model versus the number
of processors utilized. The analysis attribute synchronization times are also shown.
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The geometry used in the parallel simulation is similar to
Fig. 8(a), a rectangular plate with an initial notch. The geometric
domain, though, has dimensions equal to 128 mm � 32 mm, and
the length of the initial notch is 32 mm. A unit thickness is as-
signed for the computation of plane stresses. The rectangular
geometry corresponds to the one used by Zhang et al. [1] to inves-
tigate microbranching fracture phenomena in brittle materials by
using the extrinsic cohesive model.

The finite element model was discretized into a bidimensional
mesh of quadratic triangular elements (T6), and consists of
2,359,296 elements and 4,722,817 nodes. Initial positions of inter-
nal nodes were randomly perturbed by a factor of 0.3 times the
minimum distance of a vertex of each element to the adjacent ver-
tices, as suggested by Ref. [42], in order to reduce mesh bias and
improve crack path representations. Note that the nodal perturba-
tion helps reducing the error between the total length of the
achieved fracture path with respect to the expected length. A
Laplacian smoothing operator was also employed in order to im-
prove quality of elements in the mesh [42].

This numerical experiment was performed on a small cluster,
with 13 machines connected by a Gigabit Ethernet network. Each
machine has one Intel(R) Pentium(R) D processor, with two cores
at 3.40 GHz, 2 GB of RAM, 64-bit Red Hat Linux 4.3.2-7 operating
system (kernel version 2.6.27) and gcc compiler v. 4.3.2. The finite
element mesh was decomposed into 128 partitions, using the
graph partitioner METIS [24,25]. The mesh partitions were as-
signed to the physical processors available at the time of the sim-
ulation (13 machines, or 26 processor cores, with approximately 5
partitions per core).

The fracture propagation pattern shown in Fig. 11 is consistent
with the results obtained in Ref. [1] for serial simulations using
models of reduced geometry. The main crack branch develops



Fig. 15. (a) Mesh partitioning of the 3D model, for 128 processors; (b) numerical
simulation results for steps 500, 3000, 6000, 9000 and 12,000 (Sy � ry).
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along the horizontal direction near the center of the model. Along
the fracture path, a number of micro-cracks occur spontaneously,
starting from the main branch, as dictated by the problem physics.
Table 7
Total execution times, in seconds, for the various mesh sizes and number of processors test
is the sum of all the time steps, and corresponds to the numerical computation time plus th
elements.

Model

Mesh size Number of elements Number of processors

200 � 20 � 20 480,000 16
300 � 30 � 30 1,620,000 54
400 � 40 � 40 3,840,000 128
500 � 50 � 50 7,500,000 250
600 � 60 � 60 12,960,000 432
700 � 70 � 70 20,580,000 686
800 � 80 � 80 30,720,000 1024
In Fig. 12, the region around the main crack branch is enlarged to
show the secondary micro-cracks. Branching frequency and size
tend to increase with the initial deformation applied to the model,
as observed in Ref. [1]. Mesh partitioning is shown in Fig. 13.

5.2.4. Relative parallel performance
The performance of parallel simulations is evaluated with re-

spect to an increasing number of processors, considering a large
number of processors. As in the previous experiment, mesh dis-
cretization is fixed, whereas the number of processors varies. The
3D model was used in this experiment; the mesh is discretized into
400 � 40 � 40 hexahedra, each hexahedron is divided into 6 linear
tetrahedral elements (i.e. total of 3,840,000 elements). The number
of processors varies in the range between 32 and 512, and 12,000
simulation steps were employed.

Execution times are summarized in Table 5, and performance
metrics in Table 6. Fig. 14 plots both the total execution time
and the time spent on attribute synchronization versus the number
of processors. For this problem size, the most significant perfor-
mance gains are achieved on up to 128 processors (e.g. more than
80% of efficiency), compared with the initial execution on 32 pro-
cessors, or four times the initial number of processors. When more
processors are utilized, communication, which is mainly repre-
sented by attribute synchronization, requires a greater percentage
of the total time step, as expected, and thus proportional perfor-
mance benefits are no longer obtained. The mesh partitioning for
128 processors and the corresponding numerical results for ry

are illustrated in Fig. 15.
ed. A total of 12,000 simulation steps were performed for the 3D model. The total time
e time for synchronization of attributes and fractured facets, and insertion of cohesive

Time (s)

Synchronization (attrib + facets) Cohesiveinsertion Total time

377.18 40.11 6226.62
731.10 158.05 7046.93
927.37 293.61 7513.59
957.49 325.30 7634.65
844.09 228.37 7732.84
886.71 285.48 7697.88
908.54 321.82 7854.31
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5.2.5. Scalability
This experiment measures the ability of the parallel simulation

to solve larger problems, considering that the number of proces-
sors increases at the same rate as the problem size (weak scaling).
Therefore, the number of elements per processor is maintained
nearly constant while the number of processors varies, which leads
to a proportional increase in the problem size. In this numerical
experiment, we use the 3D model of Fig. 8(b) with 12,000 simula-
tion steps. The number of elements per processor is fixed as 30,000
while the number of processors and the number of elements
increase.

Results for various numbers of processors are presented in Ta-
ble 7, and the total simulation time versus the number of proces-
sors is plotted in Fig. 16. In the ideal case, the number of
processors required to solve a problem is expected to scale linearly
with problem size, in order to maintain initial efficiency. Therefore,
the total execution time should be constant whenever model size
and number of processors increase at the same rate, especially
for a large number of processors. If this is the case, the application
can be considered to scale linearly with respect to problem size.
This corresponds to the isoefficiency scalability metric [26,41].

In Fig. 16, we observe a significant positive change on the sim-
ulation time for the smaller models (and the corresponding num-
ber of processors). However, as the number of processors (and
problem size) increases, the total simulation time is maintained
nearly constant. Therefore, the parallel simulation is considered
scalable for the problem sizes and number of processors tested.
Achieved results are consistent with the scalability for the inser-
tion of cohesive elements obtained in Section 5.1.

6. Concluding remarks

The ParTopS topological framework has been extended in order
to achieve scalable parallel dynamic computational simulations of
large scale cohesive fracture problems. Topological support is pro-
vided for extrinsic cohesive zone models, through efficient adap-
tive insertion of cohesive elements.

In order to evaluate the applicability of the framework to real-
istic fracture problems, a dynamic fracture simulation code has
been parallelized. Starting from a serial code developed based on
the TopS data structure, we discuss four different approaches to
parallelize the code with minimal impact on application re-coding.
In this study, the proposed approach, which combines local com-
putations and replicated computations with stable iterators, is
the most efficient.

Computational experiments demonstrate the scalability of the
parallel dynamic fracture code for both 2D and 3D simulations.
The results achieved show the applicability of the proposed frame-
work in simulations of relatively large models. Simulations have
scaled to a large number of processors and good overall computa-
tional efficiency was achieved.

Some important issues, like load balancing, have not been ad-
dressed here, though. The load imbalance introduced by insertion
of new cohesive elements is assumed to be small compared to
the computational load for processing the bulk elements. We also
assume that the initial mesh is well balanced, which is ensured
by the initial mesh partitioning method. Support for adaptive mesh
refinement (e.g. h-refinement) and coarsening is another important
feature to consider in order to improve the efficiency of numerical
simulations, as discussed in Ref [43]. This will be the focus of a fol-
low-up work. However, with the current state of proposed topolog-
ical framework, it can be used to solve real scale fracture problems,
which is important to avoid artifacts due to reduced fracture mod-
els (as discussed in the introduction).
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