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Nonlinear fracture process zone is associated with various material failure mechanisms,
and thus its size estimation is of fundamental issues in understanding material failure
behaviors. Then, the size of the fracture process zone is computationally estimated by
utilizing a cohesive zone modeling approach. Geometrically similar single edge notched
bending and compact tension configurations are employed with various combinations of
the fracture energy, cohesive strength and elastic modulus, which lead to 91 cases. The
computational results demonstrate the consistency and convergence of the fracture
process zone size according to the change of the material properties and the increase of
structural sizes. Additionally, the fracture process zone size is nondimensionalized through
using a characteristic length. The nondimensionalized results illustrate the independence
of material properties and structural geometries according to the increase of structural
sizes. Therefore, the fracture process zone size in the cohesive zone model can be
considered as an intrinsic material property.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The estimation of fracture process zone is of fundamental issues in understanding nonlinear material failure behaviors.
The fracture process zone is generally resulted from various mechanisms such as void nucleation, intergranular fracture,
crack shielding due to micro-cracks, crack deflection, aggregate bridging, crack blunting, etc. Then, the size of the fracture
process zone was analytically approximated in conjunction with linear elastic fracture mechanics, as summarized in
Table 1. Under the assumption of a constant stress redistribution ahead of a crack tip, a plastic zone size was evaluated
by satisfying an equilibrium condition [1] or relating stress intensity factors from remote tension to closure stresses at a
crack tip [2,3]. Hillerborg et al. [4] addressed the effects of a critical length on concrete fracture behavior. In order to account
for fracture of a progressively softening material like concrete, Bazant and Planas [5] employed a parabolic shape with degree
n for stress distribution ahead of a crack tip. Hui et al. [6] estimated the cohesive zone length for a soft elastic solid by equat-
ing a stress field to a characteristic chain fracture stress. Note that although various approximation approaches are employed
for the estimation of the fracture process zone size, all the estimated sizes are proportional to a characteristic size, defined as
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Table 1
Analytical approximation of the fracture process zone size.

Fracture process zone References

1
p EGF=rmax Irwin [1]
p
8 EGF=rmax Barenblatt [2] and Dugdale [3]
EGF=rmax Hillerborg et al. [4]
nþ1
p EGF=rmax Bazant and Planas [5]

2
3p EGF=rmax Hui et al. [6]
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‘ch ¼
EGF

r2
max

; ð1Þ
where E, GF and rmax are the elastic modulus, the fracture energy and the cohesive strength, respectively.
Alternatively, the fracture process zone was measured by utilizing various experimental techniques. For example, dye

penetration was used to estimate the position and shape of a crack front [7,8]. Acoustic emission waves resulted from
microcracking were detected by acoustic sensors, and related to the formation of the fracture process zone [9,10].
Additionally, a digital image correlation technique was employed to investigate the size and width of the fracture process
zone and extract corresponding fracture parameters [11–13]. Note that the measured fracture process zone size depends
on specimen geometry, structural sizes and material properties. Furthermore, it is generally different from the analytically
estimated fracture process zone size listed in Table 1.

In this context, the fracture process zone size is computationally estimated by utilizing a cohesive zone modeling
approach. The present study demonstrates the consistency and convergence of the fracture process zone size in the cohesive
zone model, and thus the process zone size can be considered as an intrinsic material property. The effects of material
properties and structural sizes on the fracture process zone are also addressed. The remainder of the paper is organized
as follows. Section 2 presents the basic concept and finite element formulation of a cohesive zone modeling for crack growth
simulation. Then, the fracture process zone in the cohesive zone model is defined and estimated in Section 3. In Section 4,
computational results of single edge notched bending and compact tension test are provided with various combinations of
material properties and structural sizes. Finally, the key findings are summarized in Section 5.

2. Cohesive zone modeling

Nonlinear fracture process zone is approximated by utilizing the concept of a cohesive zone model [2,3]. The cohesive
zone model defines a traction–separation relationship in order to account for progressive damage and fracture mechanisms
along fracture surface. For example, Barenblatt [2] and Dugdale [3] assumed a constant stress distribution for elastic–plastic
fracture, while Hillerborg et al. [4] utilized a linear softening model for crack growth analysis of concrete. Further indepth
reviews on traction–separation relations can be found in literature (e.g., [14]).

In the standard finite element method, the cohesive zone model is generally implemented by introducing cohesive sur-
face elements. Prior to computational simulation, cohesive surface elements are inserted between continuum elements
within a potential crack path, which leads to an intrinsic cohesive zone modeling approach. The intrinsic cohesive zone mod-
eling approach has been widely utilized to investigate various failure behaviors such as quasi-brittle materials [15,16], adhe-
sive bond joints [17,18], composite materials [19,20], etc. Alternatively, the cohesive zone model can be represented by other
computational approaches such as extrinsic cohesive zone models [21–23], generalized/extended finite element methods
[24], meshless methods [25], virtual internal bond models [26,27], peri-dynamics [28], etc. Note that the intrinsic cohesive
zone model approach is the choice of the present study.

The finite element formulation of the intrinsic cohesive zone model is obtained from the principle of virtual work. The
virtual work done by the external traction (Text) on boundary (C) is equal to the summation of the virtual strain energy
in domain (X) and the virtual cohesive fracture energy on fracture surface (Cc)
Z

X
d� : rdV þ

Z
Cc

dD � TcdS ¼
Z

C
du � TextdS; ð2Þ
where de and du are the virtual strain and the virtual displacement, respectively, and r is the Cauchy stress tensor. The vir-
tual cohesive fracture energy is obtained from the dot product of the virtual cohesive separation (dD) and the cohesive trac-
tion (Tc) where the cohesive traction–separation relationship is embedded in cohesive surface elements. Then, the internal
force vector (fcoh) and the tangent matrix (Kcoh) of cohesive surface elements are given as
f coh ¼
Z

Cc

BT
c TcdS; ð3Þ
and
Kcoh ¼
Z

Cc

BT
c
@Tc

@D
BcdS; ð4Þ
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respectively, where a matrix (Bc) provides the relationship between a global nodal displacement (�u) and the local separation
(D), i.e. D ¼ Bc �u [29].

For the traction–separation relationship of the cohesive zone model, a linear softening model by Camanho et al. [30] is
employed. Then, a state of separation is defined in conjunction with an effective separation (�D), i.e.
�D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

n þ D2
t

q
; ð5Þ
where Dn and Dt are normal and tangential separations, respectively. When an effective separation is smaller than a critical
separation (�dcr), the cohesive traction linearly increases to the cohesive strength (rmax) according to the increase of
separation
Tc ¼ KpD; ð6Þ
where a penalty stiffness (Kp) is the ratio of the cohesive strength to the critical separation, i.e. KP ¼ rmax=�dcr . If an effective
separation is in between a critical separation (�dcr) and a complete failure separation (�df ), a damage variable (d) is introduced
d ¼
�D� �dcr

�Dð1� �dcr=�df Þ
; ð7Þ
for a linear softening. Note that the damage variable is initially zero, and monotonically increases to one with the increase of
the effective separation. Then, the cohesive traction vector is given as
Tc ¼ ð1� dÞKpD: ð8Þ
Finally, when the effective separation is greater than the complete failure separation, the cohesive traction is set to zero. The
complete failure separation is evaluated by equating the fracture energy (GF) to the area under the traction–separation rela-
tion, i.e. �df ¼ 2GF=rmax.

3. Estimation of fracture process zone

The fracture process zone in the cohesive zone model is estimated through defining four states of cohesive separations:
elastic stage, onset of fracture, progressive failure and complete failure (see Fig. 1). Before a crack initiation, the state of sep-
aration is considered as an elastic stage. At this stage, the separation is in between zero and the critical separation. When the
separation is the critical separation, the cohesive traction reaches the cohesive strength, which corresponds to the onset of
fracture. Then, the progressive damage and/or nonlinear fracture process along fracture surface is expected while a sep-
aration increases up to the complete failure separation. If separation is greater than the complete failure separation, no cohe-
sive resistance exits along fracture surface. Therefore, the fracture process zone in the cohesive zone model is defined as the
region for the progressive damage and/or nonlinear fracture process, which corresponds to the length between a position of
the critical separation and a position of the complete failure separation along the fracture surface.

Then, the fracture process zone size is evaluated for a single edge notched bending test, as an example. The geometry and
sizes of a single edge notched bending test are shown in Fig. 2. Three specimen sizes are employed with the widths (W) of
150, 500 and 6000 mm. The span (S) and the initial notch length (a0) are 4W and W/3, respectively, with the thickness of
80 mm. The fracture energy and the cohesive strength are arbitrarily selected as 200 N/m and 6 MPa, respectively, with
the elastic modulus of 30 GPa and the Poisson’s ratio of 0.2. Then, the applied load and the fracture process zone size are
Elastic rangeProgressive failureComplete failure Onset of fracture

Fracture process zone

Fig. 1. Schematics of fracture process zone in the cohesive model.
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Fig. 2. Geometry and sizes of a single edge notched bending test.
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Fig. 3. Load and fracture process zone size with respect to CMOD for (a) W = 150 mm, (b) W = 500 mm and (c) W = 6000 mm.
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plotted with respect to the crack mouth opening displacement (CMOD), as shown in Fig. 3. When the load is applied to the
specimen, the size of the fracture process zone initially increases from an initial notch. For the specimen width of 150 mm
(Fig. 3(a)), the applied load reaches maximum, and then the maximum process zone size is observed. After reaching the
maximum process zone size, its size decreases to zero while a crack tip reaches to the boundary of a specimen. For the inter-
mediate size (W = 500 mm), the maximum size of the fracture process zone is obtained right after the maximum load shown
in Fig. 3(b), because the boundary effect decreases according to the increase of the specimen size. Note that if the structural
size is large enough (e.g. W = 6000 mm), the size of the process zone remains almost constant after the load reaches a maxi-
mum value (Fig. 3(c)). Then, in this study, the maximum value of the fracture process zone size during computational sim-
ulation is selected as the fracture process zone size in the cohesive zone model (‘CZM).

4. Computational results

The fracture process zone in the cohesive zone model is evaluated according to the changes of material properties and
structural sizes. Two test configurations are employed, i.e. single edge notched bending and compact tension specimens,
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as illustrated in Figs. 2 and 4. Then, the non-dimensional analysis is performed on the basis of 56 cases of single edge notched
bending tests and 35 cases of compact tension tests.

The crack propagation of single edge notched bending and compact tension specimens are simulated by utilizing a com-
mercial finite element software, i.e. Abaqus [31]. The domain is discretized into bilinear quadrilateral elements while the
cohesive crack is represented by inserting cohesive surface elements along a potential crack path. The positions of the critical
separation and the complete failure separation are obtained by interpolating nodal displacement with shape functions.
4.1. Effects of material properties

In order to investigate the effects of material properties on the fracture process zone size, the fracture energy (GF), the
cohesive strength (rmax) and the elastic modulus (E) are changed with the constant Poisson’s ratio of 0.2. The dimensions
and material properties of single edge notched bending and compact tension specimens are summarized in Tables 2–4.
For the effects of the fracture energy, the fracture energy is arbitrarily selected as 100, 200 and 400 N/m while the other
material properties are fixed, i.e. the cohesive strength of 6 MPa and the elastic modulus of 30 GPa. Then, the estimated sizes
of the fracture process zone (‘CZM) are 61.5, 118.5 and 230.0 mm for the single edge notched bending test (Table 3) and 57.3,
105.1 and 183.3 mm for the compact tension test (Table 4). The increase of the fracture energy results in the increase of the
process zone size because the higher fracture energy provides more resistance for a given separation along fracture surface.
Furthermore, when the fracture energy is doubled, the process zone size is almost doubled, which corresponds to the rela-
tions in the analytical fracture process zone size (Table 1).

For the effects of the elastic modulus, the elastic modulus is varied as 30, 60 and 120 GPa with the fixed fracture energy
and the cohesive strength. The fracture energy is 200 N/m for the single edge notched bending test and 100 N/m for the com-
pact tension test, while the cohesive strength is 6 MPa for both tests. The increase of the elastic modulus leads to the
increases of the fracture process zone size, as shown in Tables 3 and 4. Note that the process zone size is almost doubled
when the elastic modulus increases two times.

Finally, the cohesive strength is chosen as 3, 6 and 12 MPa with a constant elastic modulus (E = 30 GPa). The fracture
energy of the single edge notched bending test is 200 N/m and of the compact tension is 100 N/m. The calculated results
demonstrate that the fracture process zone decreases with respect to the increase of the cohesive strength (Tables 3 and
4). This is because more brittle failure is expected for the higher cohesive strength and because the higher cohesive strength
leads to a complete failure at a smaller separation. Additionally, when the cohesive strength is doubled, the process zone size
decreases approximately four times. Thus, one expects that the process zone size is inverse proportional to the square of the
cohesive strength in the cohesive zone modeling. In summary, the fracture process zone size (‘CZM) of the cohesive zone
model is proportional to the characteristic length (‘ch).
4.2. Effects of structural size

The effects of structural sizes on the fracture process zone are investigated through changing structural sizes with a con-
stant ratio of structural dimensions, which leads to geometrically similar structures. For a single edge notched bending test,
an initial notch to width ratio (a0/W) is 1/3 while a span to depth ratio is 4 (S/W) with a unit thickness. Then, the width of a
specimen ranges from 63 mm to 12,000 mm with 8 cases, as shown in Table 5. The fracture energy and the elastic modulus
are 200 N/m and 30 GPa, respectively, and three cohesive strengths are tested in this example (e.g. rmax = 3, 6 and 12 MPa).
For a compact tension test, the initial notch to width ratio (a0/W) of 1/5 is employed with a unit thickness. The range of the
specimen width is from 50 to 6000 mm (5 cases), as summarized in Table 6. Similarly, the cohesive strengths are 3, 6 and
12 MPa with the fracture energy of 100 N/m and the elastic modulus of 30 GPa.

The evaluated fracture process zone size is plotted with respect to the structural size (Fig. 5). With the increase of the
structural size (W), the size of the process zone increases while the change of the process zone size decreases for both single
edge notched bending and compact tension specimens. Such results demonstrate the convergence of the process zone size to
a constant value. In addition, the increase of the cohesive strength results in the faster convergence of the process zone size



Table 5
Dimensions of single edge notched bending specimens.

Width, W (mm) Initial notch, a0 (mm) Span, S (mm) Length, L (mm)

63 21 250 350
150 50 600 700
250 83 1000 1100
500 167 2000 2100

1000 333 4000 4100
3000 1000 12,000 13,000
6000 2000 24,000 25,000

12,000 4000 48,000 50,000

Table 6
Dimensions of compact tension specimens.

Width, W (mm) Initial notch, a0 (mm) Height, H (mm)

50 10 60
100 20 120
200 40 240

1000 200 1200
6000 1200 7200

Table 2
Dimensions of single edge notched bending and compact tension tests.

Single edge notched bending Compact tension

W (mm) a0 (mm) S (mm) L (mm) W (mm) a0 (mm) H (mm)

3000 1000 12,000 1300 1000 200 1200

Table 3
Effects of material properties on the fracture process zone
size for single edge notched bending specimens.

GF (N/m) E (GPa) rmax (MPa) ‘CZM (mm)

100 30 6 61.5
200 118.5
400 230.0

200 30 6 118.5
60 229.2

120 415.6

200 30 3 417.2
6 118.5

12 31.5

Table 4
Effects of material properties on the fracture process zone
size for compact tension specimens.

GF (N/m) E (GPa) rmax (MPa) ‘CZM (mm)

100 30 6 57.3
200 105.1
400 183.3

100 30 6 57.3
60 104.7

120 181.9

100 30 3 182.8
6 57.3

12 15.6

K. Ha et al. / Applied Mathematical Modelling 39 (2015) 5828–5836 5833



(a) 

(b) 

10
2

10
3

10
4

10
1

10
2

10
3

Width, W (mm)
F

ra
ct

ur
e 

pr
oc

es
s 

zo
ne

 s
iz

e 
(m

m
)

σ
max

 = 3 MPa

σ
max

 = 6 MPa

σ
max = 12 MPa

10
2

10
3

10
4

10
1

10
2

Width, W (mm)

F
ra

ct
ur

e 
pr

oc
es

s 
zo

ne
 s

iz
e 

(m
m

)

σ
max

 = 3 MPa

σ
max

 = 6 MPa

σ
max = 12 MPa

Fig. 5. Convergence of the fracture process zone size for (a) single edge notched bending and (b) compact tension specimens.
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because the higher cohesive strength provides a smaller size of the fracture process zone, as discussed in the previous
subsection.
4.3. Non-dimensionalization of the fracture process zone

For non-dimensionalization of the fracture process zone, material properties listed in Tables 3 and 4 are utilized for the
structural size provided in Tables 5 and 6, respectively. For the single edge notched bending test, 56 computational sim-
ulations are performed with 8 geometrically similar structures and 7 combinations of material properties. For the compact
tension test, 35 computational simulations are performed with 5 geometrically similar structures and 7 combinations of
material properties. The calculated fracture process zone size (‘CZM) is divided by the characteristic size (‘ch), which leads
to a dimensionless characteristic factor.

The nondimensionalized fracture process zone is plotted according to the width of specimens, as shown in Fig. 6. The
results demonstrate that the nondimensionalized fracture process zone size converges to a constant value while the width
of specimens increases. The faster convergence of the nondimensionalized process zone size is observed when the calculated
fracture process zone size is smaller, which corresponds to the smaller characteristic length (‘ch). Additionally, the same
characteristic length with different material property combinations can provides the same fracture process zone size. For
example, the characteristic length with GF = 200 N/m, E = 30 GPa and rmax = 3 MPa is identical to the length with
GF = 200 N/m, E = 120 GPa and rmax = 6 MPa, which is calculated as 666.7 mm. Such cases result in the same fracture process
zone sizes in the cohesive zone model for given structural sizes, as illustrated in Fig. 6. Furthermore, the converged ratio of
the fracture process zone in the cohesive zone model to the characteristic length is almost geometric independent because
the converging value for the single edge notched bending test (0.73–0.76) is almost the same as for the compact tension tests
(0.71–0.80).
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5. Conclusion

The size of nonlinear fracture process zone is computationally estimated in conjunction with the cohesive zone model.
The single edge notched bending tests with 56 cases and the compact tension tests with 35 cases are considered. The cal-
culated process zone size demonstrates similar trends with the analytical fracture process zone size. Material properties,
which provide the same characteristic length, result in almost the same fracture process zone in the cohesive zone model.
Additionally, when the fracture energy or the elastic modulus is doubled, the process zone size increases two times. If the
cohesive strength decreases in half, the process zone size increases four times, which corresponds to the relations of the
characteristic length. For geometrically similar structures, the process zone size converges to a constant value with respect
to the increase of structural size. Furthermore, the nondimensionalized fracture process zone size also converges to a con-
stant value for any combination of material properties. The converged value for the single edge notched bending test is
almost the same as for the compact tension tests, and therefore, the evaluated fracture process zone size in the cohesive zone
model can be considered as an intrinsic material property.
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