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The investigation of multiple crack interactions in fracture mechanics is important to predict the safety and reliability of structures.
This study aims to investigate the interactions of multiple parallel cracks in a semi-infinite domain in both deterministic and
probabilistic ways by using an automated finite element modeling procedure and the Monte Carlo simulation. The stress intensity
factor is considered as an indicator of failure and accurately evaluated by using the domain integral technique. The variation
of the stress intensity factor according to the position, the length, and the number of cracks is demonstrated. In a probabilistic
investigation, the effects of the number of cracks, the random distribution of the crack lengths, and the crack interactions to the
failure probability are studied for a semi-infinite domain. The stress redistribution among multiple cracks, the effect of unevenly
distributed crack lengths, and the combined effect of crack length uncertainties and a crack shielding effect have been examined.

1. Introduction

The crack initiation, growth, and interaction of multiple
cracks play a critical role in predicting structural failure in the
fields of civil, electrical, and aerospace engineering. Multiple
crack initiations and growth are generally observed in a struc-
tural member in service loading conditions because of initial
defects, microstructures, and so forth. Such multiple cracks
in a structuralmember significantly impact on the probability
of failure due to uncertainties on crack interactions. Thus, a
thorough investigation of multiple cracks in terms of their
fracturemechanics is essentially needed to estimate the safety
and reliability of structures, but such efforts have mainly
been focused on in the investigations of a single crack or
deterministic investigation of multiple cracks except several
recent studies. For more realistic and reasonable research,
the randomness or uncertainties in parameters should be
considered but it is often hindered by the computational
complexity in a probabilistic modeling of multiple cracks and
uncertainties in fracture properties.

Multiple crack interactions have generally been investi-
gated on the basis of deterministic approaches. The stress

intensity factors of multiple cracks were evaluated for various
configurations (e.g., [1–4]). For example, Tsang et al. [5]
investigated multiple penny-shaped cracks in a solid elas-
tic cylinder under mode-I loading and demonstrated the
decrease of the stress intensity factor according to the increase
of the number of parallel cracks. Loehnert and Belytschko [6]
demonstrated crack shielding and amplification due to the
interaction between multiple microcracks and a macrocrack.
Kamaya [7] evaluated the stress intensity factor for various
relative positions and shape of two semi-elliptical cracks.
Liu et al. [8] analyzed multiple rock cracks under seepage
pressure and addressed the interactions of multiple rock
cracks.

Some recent studies on the probabilistic investigation and
modeling of multiple cracks are found as follows. Xiaofeng et
al. [9] developed a stochastic finite element model for plane
multiple cracks based on the Taylor stochastic finite element
method using the quarter point and triangular elements.
The uncertainties in material properties, crack length, and
load were considered.The partial derivatives of displacement
and stiffness matrix with respect to random variables were
derived using the Taylor stochastic finite element model,
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Figure 1: Contours around a crack tip for the domain integral.

and the partial descriptors of the stress intensity factor were
obtained. Leonel et al. [10] conducted a probabilistic analysis
on a multi-perforated panel with two cracks at each hole.
The limit state was defined in terms of the number of load
cycles. The uncertainties in loading, material properties,
and geometric parameters were considered. The first-order
reliability method and the response surface method were
used in conjunction with the boundary element method.
Feng et al. [11] proposed a probabilistic model for multiple
crack growth in a stiffened panel in terms of crack sizes. The
Monte Carlo simulation was utilized to estimate the partial
descriptors of the crack growth model, and the correlation
between the crack sizes was considered. The prediction of
the crack propagation was modeled on the basis of the
Paris-Erdogan law. Chowdhury et al. [12] evaluated the
reliability of cracked specimens using the first- and second-
order reliability methods considering the uncertainty in
crack geometry and material properties. Four linear elastic
homogeneous isotropic cracked specimens with edge crack,
double edge crack, edge crack with a fixed base, and an
angled edge crack were considered. In addition, a shape
sensitivity analysis of the stress intensity factorwas conducted
using the scaled boundary finite element method, which
required no remeshing according to the size and orientation
of a crack. However, these studies mainly focused on the
methodological and theoretical development in probabilistic
fracture mechanics modeling.

This study focuses on investigating the interaction effects
of multiple parallel cracks on a semi-infinite domain. The
investigation is conducted deterministically and probabilisti-
cally through integrating an automated finite element model-
ing procedure and the Monte Carlo simulation.The effects of
the number of cracks and the randomness in the crack length
to the stress intensity factor and the failure probability of the
semi-infinite domain are investigated considering the crack
shielding effect among multiple cracks.

2. Evaluation of the Stress Intensity Factor

For the evaluation of the stress state around a crack tip
region, a stress intensity factor is introduced based on the
linear elastic fracture mechanics. When a stress intensity
factor is greater than a critical value, a crack propagates and
the failure of a structure is expected for brittle materials.
The critical value is generally called fracture toughness. The
stress intensity factor is evaluated by employing various
computational methods such as boundary element methods
[13], quarter point elements [14, 15], domain integral [16], and
generalized/extended finite element methods [17–19].

In the present study, the stress intensity factor at a
crack tip is evaluated by utilizing the 𝐽-integral [20], which
corresponds to the energy release rate, in conjunction with
the domain integral technique [16]. The 𝐽-integral around a
crack tip (see Figure 1) is defined along a contour (Γ

0
) with

the normal vector (n),

𝐽 = ∫
Γ0

(𝑊𝛿1𝑖 −𝜎
𝑖𝑗

𝜕𝑢
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𝜕𝑥1
)𝑛
𝑖
𝑑Γ, (1)

where 𝑊 is the strain energy density and 𝜎
𝑖𝑗
and 𝑢

𝑖
are the

components of a stress tensor and a displacement vector in
the Cartesian coordinates (𝑥

1
-𝑥
2
) system. Alternatively, the

𝐽-integral is expressed along a closed contour (Γ∗), which is
expressed as

𝐽 = ∫
Γ
∗

(𝜎
𝑖𝑗

𝜕𝑢
𝑗

𝜕𝑥1
−𝑊𝛿1𝑖)𝑚

𝑖
𝑞 𝑑Γ

−∫
Γ
+
+Γ
−

𝜎2𝑗
𝜕𝑢
𝑗

𝜕𝑥1
𝑚2𝑞 𝑑Γ,

(2)

where 𝑞 is an arbitrary smooth function that is unity on Γ
0
and

zero on Γ
1
and 𝑚

𝑖
is the components of the outward normal

vector (m) of the closed domain (𝐴∗), as shown in Figure 1.
The closed contour (Γ∗) consists of four curves of Γ

0
, Γ
1
, Γ
+,

and Γ
−; that is, Γ∗ = Γ

−
+ Γ
1
+ Γ
+

− Γ
0
. Through utilizing

the divergence theorem, the contour integral expression (2)
is converted to a domain integral [15]; that is,
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(3)

Based on the equilibrium condition and eliminating thermal
strain, body force, and crack face traction, one simplifies the
domain integral expression as

𝐽 = ∫
𝐴
∗

(𝜎
𝑖𝑗

𝜕𝑢
𝑗

𝜕𝑥1
−𝑊𝛿1𝑖)

𝜕𝑞

𝜕𝑥
𝑖

𝑑𝐴 (4)

which is equivalent to (1).
The displacement and stress fields within a domain are

evaluated by using a finite element method. A domain
is discretized into a finite element mesh with quadratic
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Figure 2: Finite element mesh around a crack tip region.

rectangle elements. A collapsed quarter point element is
utilized around a crack tip region, which leads to a singular
stress variation around a crack tip region. Figure 2 illustrates
an example of a finite element mesh around a crack tip. The
same discretization is employed for every crack tip region.
Eight quarter point elements are used at a crack tip, and the
size of elementmonotonically increases with the approximate
ratio of 1.5 along the radial direction. For a significant amount
of the finite element analysis with arbitrary multiple crack
geometries in a semi-infinite domain, a finite element mesh
is automatically generated by developing an in-house code
with C language. In an in-house code, the position, the
length, and the number of cracks are provided as input
parameters. Then, elements along the specified cracks are
removed, and nodes are duplicated along the cracks. Then,
eight quarter point elements around crack tips are inserted
at a crack tip, and then eight-node elements are inserted
through monotonically varying element size, as shown in
Figure 2.

3. Two-Crack Interactions

When two cracks are placed in a domain, stress redistribution
occurs, which results in the change of the stress intensity
factor according to the position of cracks. In order to demon-
strate such variations, two-crack interactions are first investi-
gated for an infinite domain and a semi-infinite domain in
this section. Then, three-crack interactions and more than
three-crack interactions are addressed in Section 4.

3.1. Infinite Domain. For an infinite domain, the following
two cases are considered: serial cracks and parallel cracks.
First, two serial cracks are placedwith the spacing 𝑠.The crack
lengths of the two cracks are equally 2a, and remote tension
(𝜎
∞
) is applied. Then, the stress intensity factor is evaluated

through changing the ratio of the spacing to the crack length
(𝑠/2𝑎) and nondimensionalized by dividing it by 𝜎

∞
√𝜋𝑎.

Note that𝜎
∞

√𝜋𝑎 is the stress intensity factor of a single crack
with the length of 2𝑎 in an infinite domain. Additionally,
the nondimensionalized results are valid for any selection of

the spacing ratio to the crack length because it is based on
the linear elastic fracture mechanics. Figure 3(a) illustrates
that the closer distance results in the stronger interaction,
and thus the stress intensity factor increases further for both
outer- and inner-crack tips (𝐶

1
and𝐶

2
). When the distance is

large, the nondimensionalized stress intensity factor reaches
unity, which corresponds to no interaction between the two
cracks, that is, single crack case. The stress intensity factor at
the outer-crack tip (𝐶

1
) is lower than the factor at the inner-

crack tip (𝐶
2
) because an additional serial crack adjacent

to the inner-crack tip magnifies the stress concentration.
On the other hand, when two cracks are placed in parallel
with the spacing 𝑠, the stress intensity factor decreases while
the spacing ratio decreases, as shown in Figure 3(b). Such
reduction of the stress intensity factor is named the crack
shielding effect. Additionally, the stress intensity factors of
all the crack tips are identical because of the symmetry. In
summary, the stress intensity factor is magnified for serial
cracks while the stress intensity factor is reduced for a parallel
crack. Then, one can expect that the formation of additional
cracks is not always detrimental to a structure, and thus
the failure probability can decrease due to the formation of
multiple/additional cracks.

3.2. Semi-Infinite Domain. Two-crack interactions in a semi-
infinite domain are investigated with remote tension (𝜎

∞
).

The geometry of a semi-infinite domain with two cracks is
shown in Figure 4. For two cracks of 𝐶

1
and 𝐶

2
, the lengths

of two cracks are 𝑎
1
and 𝑎

2
with the spacing of the two

cracks (𝑠
12
), and the corresponding stress intensity factors are

evaluated. Arbitrary combinations of two cracks in a semi-
infinite domain are considered through employing the two
variables: the ratio of a short crack length to a long crack
length (𝛾

𝑐
= min(𝑎

1
, 𝑎
2
)/max(𝑎

1
, 𝑎
2
)) and the ratio of the

crack spacing to a long crack length (𝛾
𝑠
= 𝑠
12
/max(𝑎

1
, 𝑎
2
)).

For five cases of 𝛾
𝑐
, the stress intensity factor is evaluated

through varying the spacing ratio (𝛾
𝑠
) from 1.0 to 18. The

results in Figure 5 illustrate that the evaluated stress intensity
factors of the two cracks are lower than the stress intensity
factor of a single edge crack in a semi-infinite domain, that



4 Mathematical Problems in Engineering

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

s/(2a)

Crack tip at C2

Crack tip at C1

C1 C2

2a 2asK
I/(
𝜎
∞

(𝜋
a
)1
/2
)

(a)

0 2 4 6 8 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

s/(2a)

2a

s

K
I/(
𝜎
∞

(𝜋
a
)1
/2
)

(b)

Figure 3: Nondimensionalized stress intensity factor of two cracks in an infinite domain for (a) serial cracks and (b) parallel cracks.
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Figure 4: Geometry of two cracks in a semi-infinite domain.

is, 1.12𝜎
∞

√𝜋𝑎, for all cases because of the crack shielding
effect. The decrease of the stress intensity factor of the longer
crack tends to be more significant when the ratio of two-
crack lengths (𝛾

𝑐
) increases (Figure 5(a)). When two-crack

lengths are similar (e.g., 𝛾
𝑐

= 1.0), the magnitude of stress
concentration is similar.Thus, significant stress redistribution
is expected, which lowers the stress intensity factor of a long
crack compared to a single edge crack case. For example,
when the lengths of the two cracks are the same (𝑎

1
= 𝑎
2
)

and the spacing ratio is 1.0 (𝛾
𝑠

= 1), the normalized stress
intensity factor is 0.857, which is approximately 75% of the
stress intensity factor for a single edge crack in a semi-infinite
domain. If two-crack lengths are significantly different (e.g.,
𝛾
𝑐
= 0.25), a long crack dominates the stress concentration,

which is similar to the case of a single edge crack. In
addition, when the spacing between two cracks increases, the
stress intensity factor increases and converges to the value
of 1.12𝜎

∞
√𝜋𝑎, which corresponds to the stress intensity

factor of the single edge crack in a semi-infinite domain. The
stress intensity factor of the shorter crack (𝐾

𝐼min) is lower
than the stress intensity factor of a single crack case due to

the existence of a longer crack (Figure 5(b)). The amount of
reduction is more significant when the spacing ratio between
two cracks (𝛾

𝑠
) is closer, and the ratio of two-crack lengths

(𝛾
𝑐
) is smaller.

4. Multiple Crack Interactions

The effects of multiple cracks on the stress intensity factor in
a semi-infinite domain are investigated through changing the
spacing of cracks, the length of cracks, and the number of
cracks. For 𝑛 cracks in a semi-infinite domain under remote
tension, the stress intensity factor (𝐾

𝐼𝑖
) of the 𝑖th crack (𝐶

𝑖
) is

expressed as

𝐾
𝐼𝑖

= 𝜎
∞√𝜋𝑎

𝑖
𝐹
𝑖
, (5)

where 𝑎
𝑖
and 𝐹

𝑖
are the length and the geometric function of

the 𝑖th crack, respectively. The spacing between the 𝑖th crack
and the 𝑗th crack is denoted as 𝑠

𝑖𝑗
. The geometric functions

(𝐹
𝑖
) represent the change of the stress intensity factor accord-

ing to the position, the length, and the number of cracks in
a semi-infinite domain. In the following subsections, three-
crack examples are first considered, and then the effects of
the number of cracks are demonstrated through evaluating
the normalized stress intensity factor, that is, 𝐾

𝐼𝑖
/(𝜎
∞√𝜋𝑎

𝑖
).

4.1. Three-Crack Interactions. For three-crack interactions,
the stress intensity factor of each crack is evaluated through
varying the crack length ratio and the spacing ratio. First, the
ratio of the 2nd crack length to the 1st crack length (𝑎

2
/𝑎
1
)

ranges from 0 to 5. Note that 𝑎
2
/𝑎
1

= 0 corresponds to
the two-crack interactions of 𝑎

1
and 𝑎
3
. The three cracks are

equally spaced, and the ratio of the spacing between the two
adjacent cracks to the 1st crack length is fixed to one (i.e.,
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Figure 5: Nondimensionalized stress intensity factor of two cracks in a semi-infinite domain: (a) a long crack and (b) a short crack.

𝑠
12
/𝑎
1

= 𝑠
23
/𝑎
1

= 1). The results are illustrated in Figure 6
for three cases of the 3rd crack length ratio (𝑎

3
/𝑎
1

= 1,
2, 3). As a guidance, the stress intensity factor of a single
edge crack in a semi-infinite domain, that is, 1.12𝜎

∞
√𝜋𝑎,

is plotted as a dashed line. The stress intensity factor of the
1st crack does not change significantly until the length of
the second crack approximately reaches the length of the
first crack (see Figure 6(a)). When the length of the second
crack is greater than that of the first crack, the stress intensity
factor tends to decrease because of the crack shielding effects.
In addition, the greater length of the 3rd crack (𝑎

3
) results

in a more decrement in the stress intensity factor of the
1st crack, as expected. The stress intensity factor of the 2nd
crack increases and converges to that of the single edge crack
in a semi-infinite domain, as the crack length of the 2nd
crack increases (Figure 6(b)). When the 2nd crack length
is relatively small, the compression on a crack surface is
observed. This is because the crack opening width of the
side cracks is larger than that of the center crack and thus
the crack opening of the center crack is dominated by the
interactions from the side cracks. For the 3rd crack, the stress
intensity factor remains almost constant until the center crack
reaches the length of the 3rd crack, which is similar to the
1st crack case. In addition, when the three-crack lengths are
identical, the normalized stress intensity factor of the side
crack is higher than that of the center crack. This is because
the center crack has more number of adjacent cracks than the
side crack, and thus the stronger shielding effect is expected.

4.2. More than Three Cracks. Multiple crack interactions
are investigated by changing the crack length ratio and the
number of cracks. The second crack length ratio varies while
the other crack length ratios to the length of the first crack

are fixed as one. In addition, the crack spacing ratio to the
first crack length is taken to be one. The number of cracks
is considered as 3, 4, 5, 6, and 10. Figure 7 illustrates that
the stress intensity factor of the first crack slightly decreases
according to the increase of the number of cracks. When
the 2nd crack length ratio (𝑎

2
/𝑎
1
) is greater than 1.0, the

difference of the stress intensity factors is smaller according
to the change of the number of cracks. Additionally, the stress
intensity factor of the 1st crack tip keeps decreasing as the
stress intensity factor of the 2nd crack tip converges to the
value in the single crack example.

5. Probabilistic Investigation of Multiple
Crack Interactions

5.1. Failure Probability of a Semi-InfiniteDomainwithMultiple
Cracks. This section extends the discussions in the previous
sections into the probabilistic investigation of multiple par-
allel cracks when the crack lengths are randomly distributed.
For this purpose, the probability of failure of a semi-infinite
domain is evaluated. When multiple cracks exist in a semi-
infinite domain, the failure in a domain can be defined such
that at least one crack has a stress intensity factor that exceeds
the threshold value at its tip. This definition can be expressed
using the following limit state function:

𝑔 (X) = 𝐾
𝐼𝐶

−max (𝐾
𝐼1 (X) , 𝐾

𝐼2 (X) , . . . , 𝐾
𝐼𝑖
(X) , . . . ,

𝐾
𝐼𝑛 (X)) ,

(6)

where X denotes a vector of parameters that include the
length of all cracks and crack spacings in a semi-infinite
domain. Additionally, 𝐾

𝐼𝐶
denotes the fracture toughness of

a material, and 𝐾
𝐼𝑖
(X) denotes the stress intensity factor at
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Figure 6: Nondimensionalized stress intensity factor of three cracks in a semi-infinite domain.

the 𝑖th crack tip. When 𝑔(X) < 0, the semi-infinite domain
is considered to be failed. It should be noted that the value
of 𝐾
𝑙𝑖
(X) is determined based not only on the information

of the 𝑖th crack but also on that of the other cracks such as
the number, position, and length of those cracks. Therefore,
X includes not only the information related to the 𝑖th crack
but also that of the other cracks.

To estimate the probability of the failure in a semi-infinite
domain, the Monte Carlo simulation is adopted despite of its
limitation in computational costs, because it can easily handle
the change of the interaction of multiple cracks due to the
randomness in X in (6). Other component-level probability

evaluation methods such as the first-order and second-
order reliability methods [21] cannot effectively consider this
change.

The repeated evaluation of a limit state in theMonteCarlo
simulation considering the random lengths of cracks has
been carried out on the basis of an automated finite element
modeling procedure.The random crack lengths are generated
using a random number generator in MATLAB, and then a
finite element mesh is automatically generated as described
in Section 2. After obtaining the stress intensity factor from
the finite element analysis with ABAQUS, the limit state
function in (6) has been evaluated by plugging in those
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Figure 7: Effects of number of cracks on the stress intensity factor.
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lengths to check if the domain fails according to the condition
that 𝑔(X) < 0. Note that the random length is defined
as a truncated normal distribution with the assigned mean
and standard deviation values. For the truncated normal
distribution, the minimum and maximum length ratios to
the averaged crack length (𝑎avg) are taken as 0.1 and 2.0,
respectively, to avoid any negative values or extremely small
or large values. In each probability evaluation, 1000 random
samples are generated that provide the coefficient of variation
of about 30% for a probability of the order of 10

−2. The
required computation time is 6 hours with the combined use

Table 1: Failure probability of a semi-infinite domain with 3, 4, and
5 cracks.

𝐾
𝐼𝐶

/(𝜎
∞√𝜋𝑎avg) 3 cracks 4 cracks 5 cracks

0.803 0.890 0.830 0.720
0.892 0.510 0.350 0.270
0.981 0.210 0.090 0.040
1.070 0.050 0.010 0.000

of ABAQUS andMATLAB on a computer with an Intel Core
i3-2100 @ 3.1 GHz and 8GB of RAM.

5.2. Results. When 3, 4, and 5 cracks exist, the failure
probabilities of a semi-infinite domain are evaluated by
varying the threshold values of a stress intensity factor, that is,
fracture toughness (𝐾

𝐼𝐶
). The normalized threshold values,

that is, 𝐾
𝐼𝐶

/(𝜎
∞√𝜋𝑎avg), are chosen as 0.803, 0.892, 0.981,

and 1.070 to represent the changes in the material property.
The spacing ratio to the averaged crack length (𝑠

𝑖𝑗
/𝑎avg) is

fixed as unity, and the ratio of the standard deviation to the
averaged crack lengths (𝜎/𝑎avg) is taken as 0.1. The evaluated
failure probabilities are shown in Table 1. As expected, the
failure probability increases as the threshold value increases
demonstrating that a greater stress intensity factor is required
to reach a failure state. As the number of cracks increases,
the failure probability decreases when the threshold value is
fixed. This is because the total stress generated by the remote
tension to the semi-infinite domain is redistributed to all the
cracks, as explained by the shielding effect among cracks.

The failure probabilities of a semi-infinite domain are
evaluated when there are 3, 4, 5, 7, and 10 cracks. In this
case, the mean values of each length ratio to the averaged
crack length gradually increase from0.5 to 1.5. In otherwords,
the far-left crack length has the ratio of 0.5 and the far-
right crack length has the ratio of 1.5, and the lengths of
the intermediate cracks are linearly interpolated based on
the lengths of the two far-end cracks. The distance ratio
between two adjacent cracks is 1.0, and the standard deviation
ratio of all the crack lengths to the unit crack length is
fixed to be 0.1. The results are repeatedly evaluated for the
normalized threshold stress intensity factor varying from
0.749 to 1.463. The evaluated failure probabilities (𝑃

𝑓
) are

reported in Figure 8. It is seen from the figure that the failure
probability decreases according to the number of cracks and
the threshold stress intensity factors. This is consistent with
the results in Table 1 where themean values of all crack length
ratios were fixed as 1.0 while the mean value ratios vary from
0.5 to 1.5 in the analyses in Figure 8. The shape of the plots
is similar to the inverse of a normal cumulative distribution
function that represents the distribution of a system event
consisting of normal random variables with a deterministic
threshold value. If we compare Table 1 and Figure 8, when the
normalized critical stress intensity factor (𝐾

𝐼𝐶
/(𝜎
∞√𝜋𝑎avg))

is 1.070, the probabilities in Table 1 are less than 0.05 but
Figure 8 shows the values between 0.32 and 1.00 according to
the number of cracks. This difference is because the longest
crack ratio in the latter case has a mean value of 1.5, which
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Figure 9: Failure probability of a semi-infinite domain with five
cracks when the standard deviations of the cracks change.
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Figure 10: Failure probability of a semi-infinite domain with
multiple cracks when the standard deviation of each crack length
is fixed to be 5mm.

results in a significantly higher failure probability than a crack
with amean length ratio of 1.0 and causes a system failurewith
a high likelihood according to the system definition that the
system fails if there is a failure at any crack tip.

The failure probabilities of a semi-infinite domain with
multiple cracks are evaluated when the standard deviation of
the crack lengths changes. The number of cracks is fixed to
be 5, and the mean length ratios and distance ratios between
cracks to the averaged crack length are also fixed to be 1.0

for both. The three cases are considered and compared: the
standard deviation ratio of all the lengths to the averaged
crack length (𝜎/𝑎avg) is equally (i) 0.1, (ii) 0.3, and (iii) 0.5.
The evaluated failure probabilities are plotted in Figure 9. It
is seen from the figure that the failure probability increases
as the standard deviation increases. This is because a greater
standard deviationmeans a greater randomness in the lengths
of the cracks, which reduces the crack shielding effect for the
longest crack, and thus gives a higher chance of a violation of
the limit state.

Figure 10 shows the failure probability of a semi-infinite
domain with multiple cracks when the standard deviation
ratio is fixed to be 0.5. The mean length ratios and spacing
ratios to the averaged crack length are fixed to be 1.0 for both.
By comparing the results in Table 1 and those in Figure 10,
a mixed effect of crack shielding effects and the increase
uncertainties in crack lengths are observed as follows. In
Table 1, the failure probability always decreases when the
number of cracks increases, due to the crack shielding effect.
However, in Figure 10, this trend is observed only when the
normalized threshold stress intensity factor is greater than
1.1, and otherwise it is opposite. This is because the standard
deviation ratio of the crack lengths has been increased from
0.1 in Table 1 to 0.5 in Figure 10, andmore chances are given to
the failure at each crack tip. If the number of cracks increases,
the chance of the failure of at least one crack also increases.
Therefore, this increase in the standard deviation ratio makes
the opposite effect to the crack shielding effect, and according
to the balance between the effect of uncertainties in crack
lengths and the crack shielding effect, the failure probability is
determined. The balance point is observed around the point
where the failure probability is approximately 0.7.

6. Conclusion

An investigation on the interaction effects of multiple parallel
cracks in a semi-infinite domain was carried out determin-
istically and probabilistically. Multiple cracks in the domain
resulted in stress redistribution, and thus the stress intensity
factor changed according to the position, the length, and
the number of cracks. Parallel cracks in an infinite domain
and semi-infinite domain resulted in the decrease of the
stress intensity factor because of the crack shielding effect.
When the relative crack spacing was large enough, the effects
of crack interactions decreased, which corresponded to a
single crack example.The investigation on themultiple cracks
in a semi-infinite domain was extended to a probabilistic
study by considering the randomness in crack lengths. The
series-system failure probability of a semi-infinite domain
with multiple cracks was evaluated using the Monte Carlo
simulation, and the randomness in the crack lengths was
modeled using a truncated normal distribution.The effects of
the number of cracks and the lengths of the cracks in terms
of their partial statistical descriptors of the cracks lengths
to the failure probability of a semi-infinite domain were
investigated. Some observations were made as follows. (i) As
the number of cracks increased, the failure probability was



Mathematical Problems in Engineering 9

decreased due to the stress redistribution to all the cracks,
which is called the crack shielding effect. (ii) The failure
probability of a semi-infinite domain was mostly affected by
the longest crack length instead of the average crack length of
multiple cracks. (iii) The failure probability was determined
based on the balanced effect of the uncertainty of the crack
lengths and the crack shielding effect.
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