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Abstract

The size effect is the change of structural properties, especially nominal strength, due to

scaling of geometrically similar structures. Due to the relatively large non-linear fracture

process zone, the size effect on the nominal strength of a concrete structure is explained

by non-linear fracture mechanics employing both an equivalent elastic crack model and a

cohesive zone model (CZM) approach. The concept of equivalent elastic crack model provides

the theoretical background for the size effect method (SEM) and the two-parameter fracture

model (TPFM), which provide two size-independent fracture parameters. In addition, the

CZM characterizes non-linear fracture process behavior through the bi-linear softening curve,

which is determined by four experimental fracture parameters: tensile strength (ft
′), initial

fracture energy (Gf ), total fracture energy (GF ) and critical crack tip opening displacement

(CTODc). The location of the kink point in the bi-linear softening model has been estimated

empirically in the literature. Thus a formal criterion to determine the kink point is proposed

and discussed. The bi-linear softening curve in the CZM enables prediction of the load versus

crack mouth opening displacement (CMOD) experimental curves as well as the size effect.

Several examples and a sensitivity analysis are given to illustrate these points.
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Chapter 1

Introduction

Concrete structures experience the formation of large cracking zones before reaching the

tensile strength of the material. In general, due to the relatively large process zone, the

strength of concrete depends on the structural size considered. This relationship is called the

size effect [7]. In this chapter, background is provided with respect to: size effect, mechanisms

of crack growth in concrete, and a few numerical models. Then, the organization of thesis is

briefly outlined.

1.1 Background

A fundamental issue for the evaluation of concrete structures is to interpret experimental

values, like maximum load of a specimen, as values that are applicable to a structure in the

field. For instance, the strength of a concrete beam in the laboratory is different from the

strength of a concrete beam for an actual structure due to the difference of the beam sizes.

This is because the strength of a concrete structure depends not only on the tensile strength

of concrete, but also on the size of the structure, called the size effect. In this study, fracture

mechanics is employed to demonstrate the size effect of concrete.
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1.1.1 Size Effect

In general, the size effect due to scaling of geometrically similar structures can be character-

ized by the nominal strength of the structure, the maximum deflection and the maximum

strain. This study focuses on the nominal strength (σNu) of concrete, which is convention-

ally proportional to the maximum load divided by a representative cross sectional area. As

a result, the size effect can be represented as the deviation from the nominal strength for

geometrically similar structures. The influence of structure size on the nominal strength is

explained by the boundary layer effect, the statistical size effect and the fracture mechanics

size effect [6, 7, 8].

Boundary layer effect

Concrete behaves differently on the boundary of a structure than in the interior. This is

called the boundary layer effect, and results from the different ratio of aggregates in different

regions of concrete structures. There is relatively less aggregate on the surface boundary

of concrete structures than in the interior. Therefore, the material property varies between

the surface boundary and the interior. If the size of the boundary layer is assumed to

be independent of structural size, a small specimen would exhibit more influence of the

boundary layer effect than a large specimen. Another boundary layer effect is described

by the Poisson’s ratio effect. This effect reflects the plane stress condition on the surface

boundary and the plane strain condition in the interior. This size effect can be reduced by

using geometrically similar structures with the same thickness [6].

Statistical size effect

The study of the size effect on strength originated from the statistical aspects of material

randomness. In the 1500’s, Leonardo da Vinci claimed that “Among cords of equal thickness,

the longest is the least strong [36].� Later, Griffith [19] illustrated experimentally that the

smaller the diameter of a glass fiber, the higher its nominal strength because a smaller
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structure has less probability to contain defects that result in the material failure. Finally, the

principles of the statistical size effect were established by the pioneering work of Weibull [35].

However, for quasi-brittle materials like concrete, the statistical size effect is dominated by

the fracture mechanics size effect [6].

Fracture mechanics size effect

Fracture mechanics provides an explanation for the relationship between size and material

strength. The power scaling law of linear elastic fracture mechanics (LEFM) illustrates

the size effect based on the failure criterion without the consideration of the length scale

dimension (characteristic length). On the other hand, the energetic approach of non-linear

fracture mechanics, containing the characteristic length scale dimension, demonstrates the

size effect law for quasi-brittle materials [8].

1.1.2 Mechanisms of Crack Growth in Concrete

In general, a concrete structure undergoes distributed microcracks, the bridging zone and

a traction free microcrack [2, 34], as shown in Figure 1.1(a). Microcracks initiate ahead of

the bridging zone before the stress reaches tensile strength (ft
′). When the stress reaches

the tensile strength (ft
′), microcracks grow and coalesce, which generates the bridging zone,

also called the non-linear process zone (Figure 1.1(b)). This zone, which transfers stress

between cracked surfaces, results from the crack overlapping and branching, and from the

weak interface between aggregates and cement paste (matrix). The non-linear process zone

bridges the microcrack zone and a traction free macrocrack. When a crack opening width is

greater than a certain value, called the final crack opening width (wf ), a macroscopic crack

appears, which cannot transfer traction along cracked surfaces anymore.
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Crack overlap

Bridging zone Microcrack zone
(Non-linear process zone)

Traction-free macrocrack

Macroscopic crack

Microcrack

ft
′

wf

(a)

(b)

(c)

Figure 1.1: (a) Mechanisms of mode I crack growth in concrete [2]; (b) crack interface
bridging [34]; and (c) idealized process zone by the cohesive zone model [21].

1.1.3 Numerical Models

Numerical models of fracture can be classified by the observation scales of fracture, which

varies from the atomistic level (Figure 1.2(a)) to the micro level (Figure 1.2(b)), to the

macro level (Figure 1.2(c)). For the modeling of macroscopic cracks, the finite element

method (FEM) is usually exploited on the basis of continuum mechanics. Discontinuity of

fracture is embedded at the macroscopic continuum level by introducing local quantities like

a damaged zone. For instance, insertion of cohesive surface elements can characterize the
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non-linear process zone and a traction-free macrocrack at the macro level, called the cohesive

zone model, as shown in Figure 1.1(c). Moreover, a fracture description at the micro level

is complicated, because of the discrete nature of material failure, such as fracture and frag-

mentation. In order to simulate this discontinuity, the discrete element method (DEM) is

developed so that a solid is replaced with a discontinuous particle composite [15]. In contrast

to continuum models, the discontinuous composite results in stress and displacement discon-

tinuity in space. Finally, on the atomistic level, molecular dynamic simulation is available

by identifying interaction forces between particles with respect to atomistic coordinates [29].

A multi-scaling numerical model is proposed by Gao and Klein [18, 27], called the virtual

internal bond (VIB) model. The VIB model is based on the Cauchy-Born rule which connects

atomistic behavior in micro length scale with continuum behavior in macro length scale.

FEM models

Macro levelMicro levelAtomistic level

Atomistic models DEM models

10−8 10−6 10−4 10−2 100 10+2[m]

U

r

r

(a) (b) (c)

Figure 1.2: General observation scales of concrete fracture in numerical models. (a)
schematic of atomistic model in which r is the distance and U is the atomistic potential; (b)
crack face bridging and branching in high strength concrete and normal concrete [34]; and
(c) longitudinal cracks in engineering scale concrete pavement.
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1.2 Thesis Organization

This thesis contains five additional chapters : the size effect of concrete fracture, the cohesive

zone model, the determination of the kink point in the bi-linear softening, the numerical pre-

dictions of the size effect in experiments, and the conclusions and future studies, respectively.

First, the size effect of quasi-brittle materials, especially concrete, is discussed on the basis

of fracture mechanics in Chapter 2. The concept of the equivalent elastic crack model, the

size effect method, proposed by Bazant [4], and the two-parameter fracture model, proposed

by Jenq and Shah [26], are demonstrated and compared. Next, the cohesive zone model,

another approach to explain non-linear fracture mechanics, is discussed in Chapter 3. Es-

sentially, the basic concept of the cohesive zone model, the determination of the bi-linear

softening, and the implementation of the finite element analysis are described. Chapter 4

focuses on the determination of the kink point in a bi-linear softening curve, which is an

essential feature of the cohesive zone model. The location of the kink point is hypothesized

based on experimental fracture parameters provided by an integrated experimental valida-

tion and numerical verification. In Chapter 5, numerical results of the cohesive zone model

are compared to experimental results from three-point bending tests. The bi-linear softening

cohesive zone model is compared to the measured load versus crack mouth opening displace-

ment curves for several geometrically similar specimens, and the size effect of the nominal

strength are illustrated. Finally, this thesis ends with concluding remarks and suggestions

for future studies.
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Chapter 2

Size Effect of Concrete Fracture

A characteristic of concrete structures is size dependence of nominal strength, called the

size effect. The size effect results from the relatively large non-linear fracture process zone,

which has been interpreted by the concept of the equivalent elastic crack model [6]. In

this chapter, linear and non-linear fracture mechanics are briefly reviewed. Next, fracture

process behavior is explained. Then, the size effect is discussed based on fracture mechanics

principles. Finally, the size effect method (SEM) [4] and the two-parameter fracture model

(TPFM) [26] are discussed and compared based on the concept of the equivalent elastic crack

model.

2.1 Review of Fracture Mechanics

2.1.1 Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics (LEFM) was motivated by the work of Inglis [23] solving

the elliptical hole problem for linear elastic material. However, a sharp crack results in stress

singularity at the crack tip while the finite stress distribution around the crack tip exists in

reality. Due to this discrepancy, Griffith [19] proposed the energy balance concept: a crack

will propagate when the energy available to extend the unit area of crack is equal to the

energy required. Later, this equivalent energy was called the energy release rate (GI). In
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1959, the stress intensity factor (KI), introduced by Irwin [24], enabled calculation of the

stress and the displacement at the asymptotic crack tip field. He also derived the relationship

between GI and KI based on the crack closure analysis:

GI = KI
2/E , (2.1)

where E is the Young’s modulus of a material. The non-linear zone was assumed to be very

small at the crack tip for the Griffith and Irwin approach to linear elastic material fracture.

2.1.2 Non-linear Fracture Mechanics

The LEFM is limited in its ability to analyze a material which has a large non-linear zone

in front of a crack tip due to plastic yielding or to progressive softening. Rice [30] proposed

the application of the path independent J-integral to a crack problem and proved that J is

equal to the energy release rate for non-linear materials.

In 1961, Irwin [25] translated the non-linear fracture problem into LEFM through a plastic

zone correction, later called the equivalent elastic crack model. By assuming a constant stress

redistribution ahead of a crack tip and satisfying the global equilibrium, the plastic zone size

(rp) is calculated as follows

rp =
1

π

(
KI

ft
′

)2

. (2.2)

However, while the assumed constant stress distribution ahead of a crack tip is reasonable

for a ductile metal, this is not valid for a quasi-brittle material like concrete, because of

its progressive non-linear softening. The non-linear stress distribution ahead of a crack tip

generates a larger fracture process zone, which is generally assumed to be proportional to

the characteristic length (�ch) introduced by Hillerborg et al. [21],

�ch =

(
KI

ft
′

)2

=
E ′Gf

ft
′2 (2.3)
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where E ′ = E for plane stress, E ′ = E/(1 − ν2) for plane strain, and Gf is the fracture

energy. Through reasonable estimation of the fracture process zone size, we can obtain the

effective crack length (aec) and the effective stress intensity factor in order to linearize the

non-linear fracture problem.

In addition, to characterize brittleness of structural responses, the brittleness has been

quantified so that a number provides small quantity for ductile behavior and large for elastic-

brittle behavior [6]. For metals, the brittleness number (βK) based on the plastic zone size

(2.2) is

βK =
Dft

′2

KIc
2 , (2.4)

which provides the ASTM E 399 condition for validity of the fracture toughness test (βK ≥
2.5). Similarly, brittleness numbers for concrete structural responses were proposed by

Carpinteri [12], Hillerborg [22] and Bazant [4]. According to the characteristic length (2.3),

for instance, the brittleness number increases when the strength of concrete increases and

the fracture energy decreases.

Also, Barenblatt [3] and Dugdale [16] proposed the strip yield model, which approximates

elastic-plastic behavior by superimposing crack closure stress on stress from a LEFM solution.

This is the foundation of the cohesive zone model. Later, Hillerborg [21] expanded the CZM

concept to concrete by combining fracture mechanics and the finite element method. The

CZM will be discussed in the Chapter 3.

2.2 Fracture Process Behavior

In general, we classify fracture process behavior based on the size of the non-linear zone [6]. In

front of a crack tip, the fracture process zone, or the non-linear softening zone, characterizes

the progressive softening behavior (the gray area in Figure 2.1). The outer region of this

zone (the black area in Figure 2.1) is named the nonlinear hardening zone which represents

the hardening plasticity or perfect plasticity. For the first behavior type (Figure 2.1 (a)),

9



both the fracture process zone and the nonlinear hardening zone are relatively small such

that the LEFM is applicable. Brittle materials such as glass, brittle ceramics and brittle

metal, illustrate this type of fracture process behavior.

For the next type of behavior (Figure 2.1 (b)), because of the large nonlinear hardening

zone and the small fracture process zone due to the plastic yielding, the elasto-plastic fracture

mechanics can be exploited to analyze the the nonlinear hardening zone. Ductile materials

(e.g. ductile metals) fall into the second behavior type.

The third type behavior (Figure 2.1 (c)) is strongly related to our study, which illustrates

the progressive damage with material softening along the fracture process zone. While the

nonlinear hardening zone might be negligible for this type, the relatively large fracture

process zone significantly influences the stress redistribution. This behavior, called quasi-

brittle, is found in concrete, rock, ice, paper, stiff clay, etc. The LEFM cannot be directly

applied to these brittle materials because of the large nonlinear fracture process zone, which

results in the size effect.

(a) (b) (c)

x x x

y

x

σ σ σ

Figure 2.1: Types of fracture process behavior [6]
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2.3 Fracture Mechanics Size Effect

2.3.1 Power Scaling Law

The power scaling law, as shown in Figure 2.2 [5], represents not only that nominal strength

is independent of structure size based on the strength limit but also that the strength is

proportional to size−1/2 from the LEFM. First of all, we will derive the power scaling law

by considering the three geometrically similar structures (D0, D̄, D̃) with the corresponding

responses (Y0, Ȳ , Ỹ ). Then, applying the “ no-failure criterion � to the LEFM as well as to

the classical strength theory, we will demonstrate strength that is independent of size and

strength that is dependent on size.

To derive the power scaling law, let’s consider a scaling law function which defines the

relationship between structure size and corresponding response. A corresponding response

is only dependent on the structure size ratio, μ = D̄/D0, but independent of the choice of

the reference size (D0). The corresponding responses could be displacement, stress, strain

or maximum load. A structure size (D0) with a corresponding response (Y0) is scaled to a

structure size (D̄ = μD0) with a corresponding response (Ȳ ). Let the scaling law be f(μ),

that is

Ȳ

Y0
= f(μ) . (2.5)

Consider another structure size (D̃ = λD0) with a corresponding response (Ỹ ), i.e.

Ỹ

Y0
= f(λ) . (2.6)

Because the corresponding response is independent of the reference size, by choosing the

reference structure size D̃ for the structure size D̄, (2.5) and (2.6) generate

Ȳ

Ỹ
= f

(μ
λ

)
=
f(μ)

f(λ)
. (2.7)

11



The derivative of (2.7) with respect to the μ leads to

1

λ
f ′
(μ
λ

)
=
f ′(μ)
f(λ)

. (2.8)

When setting μ = λ, we obtain the differential equation,

1

μ
f ′(1) =

f ′(μ)
f(μ)

. (2.9)

Solution of this differential equation by the separation of variables produces

ln f(μ) = C + f ′(1) ln(μ) . (2.10)

The boundary condition is f(μ = 1) = 1 obtained conceptually; if two structural sizes are

the same, the corresponding responses are also identical, resulting in C = 0. Finally, we

obtain the power scaling law function,

f(μ) = μα , (2.11)

which can be applicable to continuum mechanics if no characteristic dimension exists in the

physical structure.

In order to evaluate the size effect on stress, we consider a structure size (D) with the

corresponding responses: displacements (u), stresses (σ) and strains (ε). The structure size,

D, is scaled to a structure size (D̄ = μD) with the corresponding responses (ū, σ̄ and ε̄).

According to the power scaling law function (2.11), displacements of a scaled structure size

(ū) is assumed to be

ū = μαu . (2.12)

Next, because stresses and strains are related to the first derivative of displacements, the

12



power laws of the stress and strain are

σ̄ = μα−1σ and ε̄ = μα−1ε (2.13)

in continuum mechanics. In the end, we are able to apply the power scaling law to the failure

criterion of both the strength limit and the LEFM.

For the plasticity or elasticity with the strength limit, the condition of “ no-failure � with

a structure size D, has the general form,

φ(σ, ε) < σ0 . (2.14)

For the scaled structure whose size is D̄ and whose corresponding responses are σ̄ and ε̄,

the condition of no-failure should be identical although the structure sizes are different. As

a result, in order to satisfy the “ no-failure criterion �,

φ(σ̄, ε̄) < σ0 , (2.15)

the power law constant of both the stress and the strain have to be zero (α − 1 = 0)

irregardless of the linear or non-linear function, φ. Thus, the stress is independent of the

structure size (D), which is illustrated by the horizontal line in the Figure 2.2. Briefly, there

is no size effect within the elastic or plastic strength limit.

The power law constant (α) based on the LEFM is different from that based on the

strength theory because the “ no-failure condition � is determined by the fracture toughness,

which is generally equivalent to the J-integral [5, 8]. Then, the “ no-failure condition � with

a structure of size D is given by

J =

∫
Γ

(
1

2
σijεijdx2 − σijnj

∂ui
∂x1

ds

)
< GI . (2.16)
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Similarly, a structure of size, D, is scaled to the structure size, D̄, with corresponding

responses (ū σ̄, ε̄). To apply the scaling law, the substitution of (2.12) and (2.13) into (2.16)

leads to

J̄ =

∫
Γ

(
1

2
(μα−1σij)(μα−1εij)μdx2 − (μα−1σij)nj

∂μαui
∂μx1

μds

)
= μ2α−1

∫
Γ

(
1

2
σijεijdx2 − σijnj

∂ui
∂x1

ds

)
= μ2α−1J < GI . (2.17)

Because the “ no-failure condition � should be identical whether the structure is scaled or

not, the exponent in (2.17) should be equal to zero, i.e. 2α− 1 = 0. Therefore, the nominal

strength depends on the structure size (D), i.e. σN ∝ 1/
√
D. If we plot this relation on

the bi-logarithmic axis (Figure 2.2), the LEFM failure condition is represented by a straight

line of slope −1/2. In conclusion, while the “ no-failure criterion � for the strength limit (e.g.

yield stress) illustrates no size effect, of LEFM (e.g. fracture energy) represents the size

effect [5, 8].

1

Quasi-Brittle Material

2

log (strength)

log (size)

LEFM (Brittle Material)

Strength Theory

Figure 2.2: Size effect on the structure strength versus structure size in bi-logarithmic plot
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2.3.2 Size Effect of Quasi-brittle Materials

For quasi-brittle materials, we can expect a smooth transition between the strength theory

and the LEFM in Figure 2.2 because of the relatively large fracture process zone. The

size effect of quasi-brittle materials connects two “ no-failure criteria �, the yield strength

(ft
′) for the strength theory and the fracture energy (Gf ) for the LEFM. Consideration of

both criteria provides the length dimension, which is generally considered to be a material

property. Therefore, similarly to Irwin’s plasticity zone size (2.2), a characteristic length

dimension exists for quasi-brittle materials.

k

1

σNσN

cf

Δa

a0

Figure 2.3: Energetic size effect law

The size effect can be demonstrated by the energy concept which states that the energy

required to create a crack is the same as the energy available. While the required energy is

the energy release rate times the fracture area, the available energy can be calculated by the

decrease of the strain energy.

We consider a uniformly stressed (σN) plate having an initial notch (a0) and a fracture

process zone (cf ) as shown in Figure 2.3. Due to the far field stress, a crack propagates

by length Δa under constant boundary displacement. During crack propagation, we assume

that while the far field stress remains constant, the strain energy density changes from σ2
N/E

to zero only in the stress relief zone, the dark gray strip in Figure 2.3. As a result, the released

strain energy is equal to σ2
N/2E times the stress relief zone. Equating the required and the
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available energy leads to

Gf = 2k(a0 + cf )× σ2
N

2E
. (2.18)

Solving for the nominal stress, we obtain the size effect expression,

σN =
Bft

′√
1 +D/D0

, (2.19)

where

Bft
′ =

√
EGf

kcf
and D0 = cf

D

a0
. (2.20)

As a result, the size effect expression (2.19) shows that the nominal strength, σN , depends on

the structure size, D, with respect to a characteristic length dimension,D0, which is generally

considered to be a material property. Furthermore, the brittleness number β = D/D0 is

introduced to make β independent of structural size and geometry [4]. In general, β is

between 0.1 and 10 for quasi-brittle materials.

2.4 Equivalent Elastic Crack Model

The concept of the equivalent elastic crack model is exploited to implement the size effect

method (SEM) by Bazant [6] and to implement the two-parameter fracture model (TPFM)

by Jenq and Shah [33]. Both the SEM and the TPFM represent the size effect on the nominal

strength depending on the structure size. In this section, the theoretical background of the

two methods is discussed, and then the relationship between the SEM and the TPFM is

given.

2.4.1 Size Effect Method

The theoretical background of the SEM is the equivalent elastic crack model applied to

an idealized infinite structure size. Because the equivalent elastic crack increment Δaec
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linearizes the non-linear fracture problems as shown in Figure 2.4, the nominal strength can

be expressed by a stress intensity factor, KIc, a structure size, D, and a geometric function,

k(αec), based on the concept of the LEFM. Therefore, the nominal strength at the equivalent

elastic crack tip can be expressed,

σNu =
KIc√

Dk2(αec)
. (2.21)

Moreover, an increment of the equivalent crack length, Δaec, converges to the critical effective

crack extension, cf , which is generally assumed to be a material property. This is similar to

Irwin’s plastic zone size, as the structure dimensions approaches infinity.

Non-linear fracture
K-fieldprocess zone

aec

Δaeca0

σ

Figure 2.4: Equivalent elastic crack model

In order to derive the size effect implied in (2.21) considering an infinite structure size,

which provides the relation, αec = α0 + cf/D, we obtain

σNu =
KIc√

Dk2(α0 + cf/D)
. (2.22)

Taking the Taylor series expansion of the geometric function, we obtain

k2(α0 + cf/D) = k2(α0) + 2k(α0)k
′(α0)

cf
D

+ · · · (2.23)
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so that we eliminate the unknown material constant, cf , in the geometric function. Because

of the infinite structure size, we could take out the higher order terms in (2.23). Substituting

(2.23) into (2.22) without higher order terms, we obtain the size effect expression,

σNu =
KIc√

k20D + 2k0k0
′cf

=
Bft

′√
1 +D/D0

, (2.24)

which is the same expression of the size effect law by the energy concept in the previous

section given by (2.19) where

Bft
′ =

KIc√
2k0k0

′cf
and D0 =

2k0
′

k0
cf . (2.25)

The non-dimensional constant, B, and the length dimensional constant, D0, can be deter-

mined by the experimental testing which provides the two fracture parameters, Gf and cf ,

and by a linear regression plot [6].

2.4.2 Two-Parameter Fracture Model

The theoretical foundation of the TPFM is the equivalent elastic crack model. The experi-

mental loading-unloading procedure enables the separation of the elastic response (CMODec)

and the plastic response (CMODpc), and provides both the loading compliance (Ci) and the

unloading compliance (Cu) as illustrated in Figure 2.5. These experimental values result in

the determination of the two fracture parameters in the TPFM: the stress intensity factor

(KIc) and the critical crack tip opening width (CTODc). By means of the concept of the

equivalent elastic crack, the parameters, KIc and CTODc, can be calculated using geometric

functions based on the LEFM solution:

KIc = σNu
√
πaeck1(αec) (2.26)
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and

CTODc = CMODec k2(
aec
D
,
a0
aec

) , (2.27)

where

CMODec =
4σNuaec
E

k3(αec) . (2.28)

In order to determine the effective elastic crack length in (2.26) and (2.27), the effective

elastic crack compliance is assumed to be equal to the unloading compliance in Figure 2.5.

Applying this assumption to (2.27) leads to, one obtains

E =
4cNa0
CiDt

k3(α0) and E =
4cNaec
CuDt

k3(αec) . (2.29)

where cN is a nondimensional constant proportional to the nominal strength. The calculation

of aec results in the determination of the two fracture parameters, KIc and CTODc, which

provide the nominal strength.

σ

CMOD

Cu

Ci

σNu

CMODpc CMODec

Figure 2.5: Loading-unloading procedure in the TPFM

2.4.3 Relationship between the SEM and the TPFM

Though both the SEM and the TPFM include the equivalent elastic crack concept, the frac-

ture parameters they calculate from the experiment are different. While the SEM determines
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Gf and cf , the TPFM calculates KIc and CTODc. We will now illustrate the relationship

between the fracture parameters of the SEM and those of the TPFM. Next, the size effect

in the TPFM will be discussed [6].

In order to connect the relationship between cf and CTODc, we will consider a far field

critically stressed (σ∞u) infinite plate with a central crack of length 2a0. This is because

the critical effective crack extension, cf , is generally regarded as a material property for the

infinite structure size. First, we will solve for aec by using KIc (2.30) and CTODc (2.32)

expressions, which is equivalent to cf for the infinite structure size. The stress intensity

factor for the infinite plate is given by

KIc = σ∞u
√
πaec . (2.30)

The crack opening width (wc) is obtained by the crack tip displacement field solution,

wc =
4σ∞u
E

√
aec2 − x2 , (2.31)

where x is the distance from the center of the crack. To substitute the crack tip coordinate

(a0) into x, we obtain

CTODc =
4σ∞u
E

√
a2ec − a20 . (2.32)

Then, from (2.30) and (2.32), we solve for the nominal strength

σ∞u =
KIc√
πa0

[√
1 + c/a0 − c/a0

]1/2
, (2.33)

and the effective crack length, which is given by

aec = a0 + a0
1 + c/a0 −

√
1 + (c/a0)2√

1 + (c/a0)2 − c/a0
, (2.34)
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where

c =
π

32

(
CTODc E

KIc

)2

. (2.35)

Due to the infinite structure size, taking the limit of Δaec as a0 →∞, one obtains

lim
a0→∞

Δaec = cf = c =
π

32

(
CTODc E

KIc

)2

, (2.36)

which defines the relationship between the fracture parameter from the SEM and that of the

TPFM. This derivation not only bridges the SEM and the TPFM fracture parameters but

also determines constants (B and D0) of the size effect expression (2.40) in the TPFM.

The size effect on nominal strength in the TPFM can also be derived by considering an

infinite structure size. According to the equation (2.21), the nominal strength of a structure

with an equivalent crack extension, Δαec, can be expressed [6] by

σNu =
KIc√

Dk2(α0 +Δαec)
. (2.37)

Similarly to the SEM, taking the Taylor series expansion of the geometric function, one

obtains

k2(α0 +Δαec) = k20 + 2k0k0
′Δαec + · · · (2.38)

so that Δαec is taken out of the geometric function. Since Δαec converges to the cf/D for

an infinite structure size D, the power series expansion of Δαec leads to

Δαec =
cf
D

+
∞∑
n=1

bn

(cf
D

)n+1

. (2.39)

Substituting (2.38) and (2.39) into (2.37), one obtains the size effect on the nominal strength,

i.e.

σNu = Bft
′
[
1 +

D

D0
+ c1

cf
D

+ c2

(cf
D

)2

+ · · ·
]−1/2

. (2.40)
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While the structure size approaches infinity, we can cancel out the cf/D and its higher order

terms resulting in the same size effect expression (2.24), where the constants B and D0 are

also the same as the SEM.
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Chapter 3

Cohesive Zone Model

The cohesive zone model (CZM) characterizes the non-linear fracture process zone ahead

of a crack tip. Through the determination of the cohesive law for concrete, the non-linear

fracture process behavior can be simulated by finite element analysis (FEA). In this chapter,

the basic concept of the CZM is explained. Next, the determination of a bi-linear softening

curve from experimental fracture parameters is discussed. Finally, FEA implementation and

verification of the CZM are illustrated.

3.1 Concept of Cohesive Zone Modeling

In general, the intrinsic CZM consists of four stages (Figure 3.1) containing physical assump-

tions for a numerical simulation. The first stage is characterized by general elastic material

behavior without separation (Figure 3.1: Stage I). We assume the material properties of

concrete to be homogeneous and linear elastic at this stage. The next stage is the initiation

of a crack when a certain criterion is met, for example, critical hoop stress or strain energy

density (Figure 3.1: Stage II). In this study, the fracture initiation criterion for a mode I

fracture is assumed to be the state of stress that reaches the cohesive strength (e.g. tensile

strength of the concrete, ft
′). Stage III concerns the evolution of the failure governed by

the non-linear cohesive law or the softening curve, i.e. the relation between the stress (σ)

and the crack opening width (w) across the fracture surface (Figure 3.1: Stage III). Because
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the cohesive law defines the characteristics of the fracture process zone, the shape of the

softening curve is essential for the CZM. In our numerical simulation, an intrinsic bi-linear

softening curve is introduced in order to characterize the concrete fracture process zone. The

final stage is complete failure when the crack opening width reaches the final crack opening

width (wf ) (Figure 3.1: Stage IV). Stage IV represents the new surfaces that are generated

in which the traction is equal to zero (no load bearing capacity).

IIIIV

Cohesive law

III

wf w

ft
′

σ

Figure 3.1: Schematic of the cohesive zone model (CZM) concept

3.2 Determination of the Cohesive Law

To characterize the CZM, it is essential to determine the shape of a softening curve. When

linear softening was first introduced to the concrete cohesive law [21], the prediction of struc-

tural strength was high. Later, Petersson [28] proposed a bi-linear softening curve whose

kink point was fixed at (0.8GF/ft
′, ft

′/3). Since then, the CZM has utilized bi-linear soft-

ening curves without agreement about the precise location of the kink point [6]. Wittmann

et al. [37] exploited a bi-linear softening curve with a stress kink point of 0.25ft
′ for their

numerical analysis. Guinea et al. [20] determined a bi-linear softening curve using the ten-

sile strength, the total fracture energy, and two parameters which represent the shape of a
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softening curve. Recently, Bazant [9] characterized the bi-linear CZM with three experimen-

tal fracture parameters (GF , Gf and ft
′). In this section, the characteristics of a bi-linear

softening curve are discussed along with the features of a bi-linear softening curve. The kink

point calculation based on experimental fracture properties is discussed in Chapter 4.

The bi-linear softening curve (Figure 3.2(b)) is adopted in order to define fracture initi-

ation at the cohesive strength, to capture the maximum load of a specimen, and to describe

post-peak behavior. The fracture initiation condition, ft
′, occurs when the crack opening

equals the critical crack opening width (wcr)

ft
′ = fcohesive law(wcr) . (3.1)

The peak load of a specimen is represented by the initial slope of the softening curve which

is related to the initial fracture energy measured by the size effect model (SEM) or by the

two-parameter fracture model (TPFM). Finally, the post-peak load behavior is characterized

by the tail of the softening curve, which is related to the difference between the total fracture

energy (GF ) and the initial fracture energy (Gf ).

Penalty stiffness
ft
′

ψft
′

Gf
GF −Gf

w1 wf

ft
′

ψft
′

Gf
GF −Gf

wcr w1 wf

(wk, ψft
′)

ww

σσ

(a) (b)

Figure 3.2: The softening curve; (a) extrinsic CZM and (b) intrinsic CZM

In order to determine the coordinates of an intrinsic bi-linear softening curve, we need

five unknown constants, ft
′, wcr, w1, wf and ψ, as shown in Figure 3.2(b). Since initial

penalty stiffness is determined based on the numerical stability considerations associated
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with a user-defined subroutine (e.g. UEL in ABAQUS), the ratio of ft
′/wcr is fixed, and

therefore only four parameters are required. Four unknown constants (ft
′, w1, wf and ψ) are

obtained by the four experimental fracture parameters: the initial fracture energy (Gf ), the

total fracture energy (GF ), the critical crack tip opening width (CTODc) and the concrete

tensile strength (ft
′). The horizontal axis intercept of the initial descending line is expressed

by

w1 =
2Gf

ft
′ , (3.2)

because the initial fracture energy is defined as the area under the first and second slope of

the curve in Figure 3.2(b). Next, the ratio of the kink point is considered to be

ψ = 1− CTODc ft
′

2Gf

(3.3)

which is addressed in Chapter 4. Finally, the horizontal axis intercept of the tail of the

softening curve is defined as the final crack opening width

wf =
2

ψft
′ [GF − (1− ψ)Gf ] , (3.4)

whose expression is obtained by equating the total fracture energy with the area under the

bi-linear softening curve.

3.3 Numerical Implementation and Verification

3.3.1 FEA Implementation

In the numerical simulation, the cohesive surface element is introduced to represent the

CZM from elastic behavior (stage I) to complete failure (stage IV). The stress in stage I is

a function of strain (ε), while the stress in stages III and IV is expressed as a function of

the crack opening width. In order to satisfy the different variables of the stress function,
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two different elements are used in cohesive zone modeling. One is the general linear elastic

element, called the bulk element, which has the stress and strain relationship

σbulk element = felastic(ε) . (3.5)

The bulk element employs two-dimensional plane stress assumptions to represent the linear

elastic behavior in stage I. The other element is the cohesive surface element, which has the

following traction and separation relationship

σcohesive element = fcohesive law(w) . (3.6)

It contains the features of the crack initiation criterion (stage II), the non-linear cohesive law

(stage III) and the complete failure condition (stage IV). In summary, inserting the cohesive

surface element between bulk elements bridges the linear elastic behavior and the fracture

propagation.

Extrinsic and Intrinsic Cohesive Zone Models

There are two ways to insert a cohesive surface element between bulk elements. If the cohe-

sive elements are inserted adaptively during a numerical simulation, we call them “ extrinsic �

because the insertion time and location are determined by the fracture initiation criterion.

When the cohesive element is inserted, additional nodes are required so that the cohesive

surface element separates the bulk elements. This also leads to a change of element number-

ing in the finite element analysis due to creation of new separation surfaces. As a result, the

extrinsic model requires change of the mesh information during simulation. On the other

hand, when the cohesive elements are inserted before a numerical simulation, we call them

“ intrinsic � CZM as all the cohesive surface elements are predefined, connecting bulk ele-

ments with double nodes. Therefore, it is not necessary for the intrinsic model to modify

the mesh information during a numerical simulation.
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In this study, the intrinsic CZM (Figure 3.2(a)) is employed, rather than the extrinsic

CZM (Figure 3.2(b)), because it is simpler. The fracture initiation criterion is secured by

introducing penalty stiffness, which causes additional compliance, but its influence is almost

negligible when the cohesive surface element is inserted along the crack path rather than

throughout a region or the entire specimen.

Mathematical Formulation

The cohesive element is formulated exploiting the principle of virtual work [14]. The internal

work consists of two different components. One is elastic behavior with small deformation

represented by the internal work of the virtual strain (δε) in the domain (Γ), and the other is

fracture behavior with finite deformation described by the internal work of the virtual crack

opening displacement (δw) along the crack line (Γc). Therefore, the summation of these two

internal work components is equal to the external work done by the virtual displacement

(δu) at the traction boundary (Γ)

∫
Ω

δεTσdΩ +

∫
Γc

δwTTdΓc =

∫
Γ

δuTPdΓ , (3.7)

where T is the traction vector along the cohesive zone, and P is the external traction vector.

The first term in equation (3.7) is the internal virtual work of the bulk element, while the

second term in the equation denotes the internal virtual work of the cohesive element. The

right hand side of equation (3.7) represents the external virtual work. Exploiting the general

linear elastic finite element formulation by using the derivative of the shape function matrix

(B) and interpolating the crack opening displacement into the nodal displacement through

the shape function matrix (N), we obtain

[∫
Ω

BTEBdΩ +

∫
Γc

NT ∂T

∂w
NdΓc

]
u =

∫
Γ

PdΓ (3.8)
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where E is the material tangential matrix for the bulk element. Consequently, the stiff-

ness matrix and load vector of the cohesive surface element are acquired for the numerical

implementation of the CZM.

Finite Element Formulation in ABAQUS

The cohesive surface element is implemented using the ABAQUS user element (UEL) subrou-

tine. The nodal coordinates, displacements, user element properties and other information

are available in the UEL subroutine, while the right-hand-side (residual force) vector and

the stiffness (Jacobian) matrix have to be defined [1]. The residual force vector is defined

by the traction vector along the crack surface,

T =

{
Tt

Tn

}
, (3.9)

while the stiffness matrix is represented by the Jacobian (tangential) matrix of the cohesive

element,

∂T

∂w
=

[
∂Tt/∂wt ∂Tt/∂wn

∂Tn/∂wt ∂Tn/∂wn

]
. (3.10)

For the determination of the traction vector and the Jacobian matrix of the cohesive

element, the bi-linear softening of mode I concrete fracture behavior is exploited. The

normal traction component (Tn) is defined by the bi-linear softening relationship

Tn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
ft

′
wcr

)
wn (0 < wn < wcr)

− ft
′

w1−wcr
(wn − w1) (wcr < wn < wk)

− ψft
′

wf−wk
(wn − wf ) (wk < wn < wf )

0 (wn > wf )

. (3.11)

The tangential component of the traction vector (Tt) is assumed to be

Tt =

(
ft
′

wcr

)
wt , (3.12)
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which illustrates only elastic behavior, since we are considering a mode I fracture. Then,

each component of the Jacobian matrix is obtained by the derivative of the traction vector

with respect to the crack opening width

∂Tt
∂wt

=
ft
′

wcr
, (3.13)

∂Tn
∂wn

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ft
′

wcr
(0 < wn < wcr)

− ft
′

w1−wcr
(wcr < wn < wk)

− ψft
′

wf−wk
(wk < wn < wf )

0 (wn > wf )

, (3.14)

and

∂Tt
∂wn

=
∂Tn
∂wt

= 0 . (3.15)

Consequently, we acquire the stiffness matrix and the load vector of the cohesive element for

implementation into ABAQUS as a UEL subroutine. The complete UEL code is provided

in the Appendix.

3.3.2 Verification of the CZM Model

The pure tension test and the double cantilever beam (DCB) test are implemented to verify

the CZM model because they can interpret fracture properties, especially the total fracture

energy, in the numerical model. The elastic modulus and four fracture parameters of concrete

material are provided in Table 3.1. These four fracture properties result in the determination

of the bi-linear softening curve (Figure 3.3) as discussed before. Equation (3.3) leads to the

Table 3.1: Material properties of concrete [31]

Young’s modulus Tensile strength Initial fracture Crack tip opening Total fracture
(E) (ft

′) energy (Gf ) width (CTODc) energy (GF )

32 GPa 4.15 MPa 56.57 N/m 0.0186 mm 164 N/m
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kink point of the bi-linear softening, while (3.2) and (3.4) provide the horizontal axis intercept

of the initial and the final descending curve in Figure 3.3.

σ (MPa)

(0.0001 mm , 4.15 MPa)

(0.0186 mm , 1.32 MPa)

w1 = 0.0273 wf = 0.1896
w (mm)

Figure 3.3: Intrinsic bi-linear softening curve based on the fracture properties of concrete
(Table 3.1)

Pure tension test

For the pure tension test, a 0.1 by 0.1 plate is elongated at the top under the displacement

control. The numerical result of the pure tension test illustrates both the cohesive strength

and the total fracture energy of the CZM. The cohesive strength is represented by the

peak stress of the plate, while the total fracture energy is an area under the stress (σ) -

displacement (δ) curve (164 N/m).

Furthermore, as shown in Figure 3.4, the numerical result of the pure tension test de-

scribes the CZM from stage I to stage IV. The linearly increasing line illustrates the linear

elastic behavior at stage I with the elastic modulus,

E =
σ

ε
=

4.07× 106

0.000129
= 31.55 (GPa) , (3.16)

which is almost the same as the defined Young’s modulus (32 GPa). The crack initiation

criterion at stage II is also satisfied when the stress of the plate approaches 4.15 MPa. The
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Figure 3.4: Numerical simulation result of pure tension test using CZM model

third part of Figure 3.4 describes the bi-linear cohesive law (Figure 3.3). The stress change

point (1.31 MPa) of the numerical result is almost identical to that of the cohesive law in

Figure 3.3. Finally, when the top displacement reaches the final crack opening width, the

stress of the numerical result is zero, which corresponds with stage IV.

DCB test

The DCB geometry of the simulation is described in Figure 3.5, with the initial notch of the

beam (a0 = 0.1m). Figure 3.6 illustrates the mesh of DCB and a view of mesh discretization

along the predicted crack path. Through the DCB test, the total fracture energy is verified

by comparing the numerical result with the analytical solution.

The DCB problem provides the two analytical solutions for the load (P ) - displacement

(Δ/2) relationship based on the linear elastic beam theory and the LEFM. The Euler-

Bernoulli beam theory provides the relationship between the point load and the displacement
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Figure 3.6: (a) Mesh of DCB problem and (b) zoom of mesh discretization at the cohesive
surface element defined.
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at the end of the cantilever

P =
3EI

a30

Δ

2
. (3.17)

The length of the beam is considered to be the initial notch of the DCB (a0) because no

fracture initiation exists in the linear elastic problem. On the other hand, when the crack

propagates, the load - displacement relation results from the introduction of the energy

release rate, called the total fracture energy, if the LEFM is applicable [2]. The total fracture

energy is expressed by

GF =
P 2

2t

dC

da
, (3.18)

where C is the elastic compliance,

C =
Δ

P
=

2(a+ a0)
3

3EI
. (3.19)

Substituting (3.19) into (3.18) leads to

GF =
12P 2(a+ a0)

2

t2h3E
. (3.20)

Finally, combining (3.19) and (3.20) results in the load-displacement relationship

P =
4

√
GF

3Et4h3

108

(
Δ

2

)−2
. (3.21)

When the total fracture energy (GF ), the elastic modulus (E) and the geometry (h, t) of

the DCB are defined, (3.21) provides the load-displacement relationship of the DCB based

on the LEFM.

Two analytical solutions of the P -Δ/2 relationship are plotted in Figure 3.7 on the basis

of the beam theory when beam length is 0.1 (m), and of the LEFM when the total fracture

energy is 164 (N/m). The numerical result of the CZM is obtained by the bi-linear softening

curve (Figure 3.3) whose total fracture energy is 164 (N/m). The agreement between the
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analytical solution of the LEFM and the numerical simulation of the CZM is excellent when

Δ/2 is greater than 0.3 mm, as shown in Figure 3.7. The difference between the analytical

solution of the beam theory and the numerical simulation of the CZM results from the non-

linear fracture process zone in the CZM model. This is because a crack propagates during the

numerical simulation of the CZM, whereas no fracture initiation exists in the beam theory.
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Figure 3.7: Load-displacement relationship of DCB obtained by the analytical solution and
by the numerical result
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Chapter 4

Determination of the Kink Point in
the Bi-linear Softening Model

Although the bi-linear softening curve proposed by Petersson [28] is conventionally employed

for the cohesive law of concrete fracture behavior, there is no agreement about the kink point.

Petersson assumed the kink point to be fixed at (0.8GF/ft
′, ft

′/3), and Wittmann [37] used a

stress kink point of 0.25ft
′. In 2002, Bazant [9] estimated the kink point at the stress change

to be between 0.15ft
′ and 0.33ft

′. These stress ratios (0.33, 0.25 and 0.15) of the kink point

seem not to be based on measured fracture properties but rather on empirical relationships.

In this chapter, a method to determine the kink point in the bi-linear softening model is

discussed on the basis of experimental fracture parameters (Gf , CTODc and ft
′). Then, the

proposed method is examined by using experimental fracture parameters and by means of

numerical simulations.

4.1 Hypothesis of the Kink Point

In general, although horizontal axis intercepts (x-intercepts) of the first and the second

descending slope in a bi-linear softening curve are clearly defined by the concept of the

initial fracture energy and the total fracture energy, the stress ratio at kink point (ψ) is

usually assumed to be between 0.15 and 0.33 without agreement on the precise location.

However, the ratio of the kink point can also be estimated on the basis of four experimental
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fracture parameters. This is because only three parameters (ft
′, Gf and GF ) are used for

the determination of the x-intercepts in a bi-linear softening curve as shown in equations

(3.2) and (3.4), though another fracture parameter, cf or CTODc, is available. The critical

effective crack extension (cf ) is obtained by the SEM, while the critical crack top opening

displacement (CTODc) results from the TPFM. Consequently, the ratio of the stress kink

point can be determined by imposing one of two fracture parameters (cf or CTODc) into

the bi-linear softening curve.

Since the softening curve is a function of the crack opening width, CTODc can be explored

for the determination of the ratio of the kink point in a bi-linear softening. First of all,

CTODc is usually between wcr and wf in the bi-linear softening (wcr < CTODc < wf ).

If CTODc is larger than the final crack opening width (wf ), the size of the specimen is

large enough for LEFM to be applicable. Next, CTODc is generally on the initial slope of

the bi-linear softening curve for relatively small specimens because this fracture parameter

is considered to be independent of the size. The initial slope of the softening curve also

determines the peak load of the specimen [17]. Finally, because CTODc and Gf are both

calculated when a specimen reaches the peak load, CTODc can be large enough to represent

the initial fracture energy along the fracture process zone. As a result, it is clear that these

three criterion are satisfied when CTODc corresponds to the kink point (wk) of the crack

opening width in the bi-linear softening curve. Therefore, the kink point of the crack opening

width is assumed as

wk = CTODc , (4.1)

so that CTODc relates to size independence and includes the initial fracture energy.

As indicated above, the ratio of the stress at the kink point can be determined by the

assumed kink point of the crack opening width. The assumption (4.1) results in the ratio of

37



the stress kink point for the intrinsic CZM

ψ =
w1 − wk
w1 − wcr

. (4.2)

Since wcr � w1 , equation (3.2) and (4.2) lead to

ψ = 1− CTODc ft
′

2Gf

, (4.3)

which enables us to determine the whole bi-linear softening curve based only on the experi-

mental fracture parameters.

4.2 Experimental Validation

Locations of the kink point calculated by (4.3) are examined by using experimental fracture

parameters. For the calculation of the kink point, selected data sets of experimental fracture

parameters provide the tensile strength and are obtained either by the TPFM or by the

SEM. This is because the location of the kink point is sensitive to ft
′, CTODc and Gf .

Table 4.1 provides data sets of experimental fracture parameters and the ratios of the stress

kink points. The shaded boxes are experimental fracture parameters of concrete provided

by Roesler et al. [31], Chang et al. [13], and Bazant et al. [10]. White cells in the initial

fracture energy column are calculated by the equations (2.1) and (2.29), and white cells in

the CTODc and in the cf columns are determined by the equation (2.36). Also, w1 and ψ

are calculated by expressions (3.2) and (4.3), respectively. The ratio of the kink point of the

ninth data set is not available, because, in this case, CTODc is greater than w1. However,

the range of the calculated ratio is between 0.14 and 0.42, which is in reasonable agreement

to the range proposed by Bazant (0.15 - 0.33).
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Table 4.1: Fracture parameters of concrete, and the calculation of the ratio of the stress kink
point ψ

Test Age fc ft E w/c KIc CTODc Gf cf w1 ψ
(days) (MPa) (MPa) (GPa) (MPa m1/2) (mm) (N/m) (mm) (mm)

[31] 135 58.3 4.15 32.0 0.42 1.13 0.0180 56.6 25.51 0.0273 0.34
135 58.3 4.15 32.0 0.42 1.29 0.0202 52.1 24.36 0.0251 0.20

[13] 28 33.9 2.92 22.3 0.3 0.91 0.02076 37.13 25.4 0.0254 0.184
28 30.1 3.16 19.7 0.3 0.82 0.01355 34.13 10.4 0.0216 0.373
90 25.2 2.57 33.6 0.65 1.09 0.016 35.36 23.88 0.0275 0.419

[10] 90 27.2 3.14 25.4 0.65 0.732 0.0092 21.10 10.01 0.0134 0.315
90 39.4 4.29 32.5 0.45 0.958 0.0097 28.24 10.63 0.0132 0.263

54.8 4.41 37.3 0.25 1.059 0.01 30.07 12.18 0.0136 0.267
28 26.8 2.58 24.6 0.77 0.992 0.0332 40.00 66.55 0.0310 N/A
28 39 3.11 33.8 0.64 1.265 0.0263 47.34 48.48 0.0304 0.136

[10] 28 49.4 3.5 34.7 0.5 1.376 0.0261 54.56 42.53 0.0312 0.163
28 67.5 4.09 37.2 0.36 1.502 0.0242 60.65 35.27 0.0297 0.184
28 78.2 4.41 40.3 0.2 1.881 0.0262 87.80 30.93 0.0398 0.342

4.3 Numerical Verification

In order to verify the assumption of the kink point, two numerical simulations of the three-

point beam-bending test were implemented by using the CZM. One simulation is for a small

size beam (D = 63 mm), and the other is for a large size beam (D = 250 mm). A bi-linear

softening curve was determined by four experimental fracture parameters (ft
′, Gf , GF and

ψ) from a data set by Roesler et al. [31]. Under the assumption of the kink point given by

(4.1), the ratio of the stress kink point (ψ) was 0.34 and the stress at the kink point (ψft
′)

was 1.41 MPa.

Through the numerical simulations, the stress profile along the crack propagation direc-

tion was examined at three different points: the pre-peak load (point A), the peak load (point

B) and the post-peak load (point C) in the load-CMOD curves (Figure 4.1(a) and 4.2(a)).

At the pre-peak load (point A), the stress at the tip of the initial notch (a0) is higher than

the stress at the kink point (1.41 MPa) as shown in Figure 4.1(b) and 4.2(b). When the load

reaches the peak point B, the stress at the tip of the initial notch (a0) nearly corresponds to

the stress at the kink point for a small size beam (Figure 4.1(c)) as well as for a large size
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beam (Figure 4.2(c)). After the peak load, the stress profile along the crack propagation

direction (Figure 4.1(d) and 4.2(d)) demonstrates a large change of slope around the stress

kink point, which resembles the bi-linear softening curve. As a result, when the stress at

the tip of the initial notch reaches the stress at the kink point, the numerical simulations

illustrate that the specimen experiences the maximum load capacity (point B). This is as-

sociated with the fact that, experimentally, the initial fracture energy and the critical crack

tip opening displacement are calculated at the peak load of the specimens. In other words,

the stress profile at the peak load includes the first slope of the bi-linear softening curve.
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Figure 4.1: (a) Numerical result of a load-CMOD curve for a small size beam (D = 63mm).
(b) Surface normal stress (σn) profile along the crack propagation direction at point A, (c)
at point B and (d) at point C in the load-CMOD curve.
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Figure 4.2: (a) Numerical result of a load-CMOD curve for a large size beam (D = 250mm).
(b) Surface normal stress (σn) profile along the crack propagation direction at point A, (c)
at point B and (d) at point C in the load-CMOD curve.
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Chapter 5

Numerical Predictions of the Size
Effect in Experiments

Numerical implementations of the CZM not only predict load-CMOD curves but also demon-

strate the size effect of geometrically similar notched concrete specimens. In this chapter,

experimental geometry and fracture parameters are provided. Then, numerical predictions

for load-CMOD curves and for the size effect in the CZM are discussed.

5.1 Experimental Description

In order to determine fracture parameters and to interpret the size effect of concrete, three

sizes (D = 63, 150, 250 mm) of notched beams were designed to implement three point

bending tests [31]. The geometry and test setup of a three-point bending test are provided

in Figure 5.1. The beams represented in Table 5.1 are geometrically similar, with the constant

thickness (t = 80 mm), the notch to depth ratio (a0/D) 1/3, and span to depth ratio (S/D)

4 for each beam size.

Table 5.1: Sizes of the geometrically similar notched beams

Depth (D) Span (S) Length (L) Notch (a0) Thickness (t)

63 250 350 21 80

150 600 700 50 80

250 1000 1100 83 80

45



(a)

D

a0

L

S

P

(b)

Figure 5.1: (a) The test setup of a three point bending test; and (b) the specimen geometry.
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Three points bending tests of three different sizes provided three fracture parameters

(GF , Gf and CTODc). The total fracture energy (GF ) were obtained by Hillerborg’s work-

of-fracture method [22] considering the self-weight of the specimen. The measured total

fracture energy increased, as the beam size increased from 63 mm to 150 mm and 250 mm.

The other two fracture parameters (Gf , CTODc) were determined either by the TPFM or

by the SEM as discussed in Chapter 2. The TPFM provided the stress intensity factor (KIc)

and the critical crack tip opening width (CTODc) for each specimen as shown in Table

5.2. Then, the initial fracture energy (Gf ) was calculated by the equations (2.1) and (2.29).

Because these fracture parameters were considered to be size independent, KIc, CTODc

and Gf were averaged for all specimens resulting in 1.13 MPa, 0.0180 mm and 56.6 N/m,

respectively. The SEM also enabled us to calculate two fracture parameters: the initial

fracture energy (Gf ) and the fracture process zone length (cf ), provided in Table 5.2. The

critical crack tip opening width (CTODc = 0.0202 mm) was calculated by the relationship

between the SEM and the TPFM (2.36).

Table 5.2: Experimental fracture parameters of concrete obtained by three-point bending
tests [31]

Specimen Hillerborg TPFM SEM

ID GF (N/m) KIc (MPa-m1/2) CTODc (mm) Gf (N/m) cf (mm)

B250 - a 193 1.261 0.0167
B250 - b 139 1.203 0.0181
B250 - c 169 1.497 0.0319
B150 - a N/A N/A N/A
B150 - b 170 1.086 0.0255
B150 - c 159 0.983 0.0115 52.1 24.36
B63 - a N/A N/A N/A
B63 - b 106 1.012 0.0159
B63 - c N/A 0.834 0.0115
CB63 - a 123 1.130 0.0142
CB63 - b 124 1.002 0.0075
CB63 - c 123 1.293 0.0184
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In addition to the calculation of these fracture parameters, the modulus of elasticity for

the hardened concrete properties was 32.0 GPa, and the split tensile strength was 4.15 MPa

which was assumed to be the cohesive strength of concrete.

5.2 Numerical Results of CZM

In numerical simulations, the bilinear rectangular plane stress element (Q4 element) was

used for bulk elements, while the cohesive surface elements were inserted between the bulk

elements along the known crack path to define the cohesive law. Figure 5.2 illustrates the

finite element mesh for specimen size D = 63 mm and the cohesive surface elements inserted

along the crack path. The size of the cohesive element was selected to be 1 mm so that the

element was small enough to represent the cohesive law along the fracture process zone.

X
Y
Z X
Y
Z

(a)

X
Y
Z X
Y
Z

Cohesive surface elements

(b)

Figure 5.2: (a) Finite element mesh for specimen size D = 63 mm and (b) zoom of mesh
along the cohesive element region.
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5.2.1 Numerical Prediction

Experimental load-CMOD curves were predicted through numerical simulations of the bi-

linear CZM for each specimen size. Fracture parameters are provided in Table 5.3. The

determination of the bi-linear softening curve in the CZM was directly based on the fracture

properties obtained from the TPFM and the SEM. It is worth mentioning that that it was

not necessary for the bi-linear CZM to be calibrated further to force the numerical results

to fit with the experimental curves.

The cohesive zone model was run with two separate data sets of fracture parameters,

one from the TPFM and the other from the SEM. Table 5.3 provides two data sets of four

fracture parameters for each specimen size. The initial fracture energy of the TPFM was

56.6 N/m, while that of the SEM was 52.1 N/m. The stress ratio at the kink point (ψ)

was calculated by equating the kink point of the crack opening width (wk) with the critical

crack tip opening width (CTODc), as discussed in Chapter 4. The TPFM provided a ratio

of 0.34 while the SEM yielded a ratio of 0.20. The average tensile strength (ft
′ = 4.15 MPa)

was obtained by the split tensile test. The total fracture energy (average) for each specific

specimen size was taken from Table 5.2.

Table 5.3: Fracture parameters in the bi-linear softening curve

Specimen Initial fracture Tensile Total fracture Stress change
size (D) energy (N/m) strength energy point (ψ)
(mm) TPFM SEM (MPa) (N/m) TPFM SEM

63 56.6 52.1 4.15 119 0.34 0.20

150 56.6 52.1 4.15 164 0.34 0.20

250 56.6 52.1 4.15 167 0.34 0.20

Figures 5.3 (a), (b) and (c) illustrate the correspondence between the numerical predic-

tions and the experimental results for each specimen size with respect to the normalized

load-CMOD curve. For comparison purposes, all the plots are provided on the same scales

for the horizontal and vertical axis. There was little difference between two numerical sim-

ulation curves from the TPFM and SEM due to the difference of the initial fracture energy
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and to the ratio of the stress kink point. The higher initial fracture energy of the TPFM

resulted in a slightly larger peak load. Because of the higher ratio of the stress kink point,

the post-peak load behavior of the TPFM was higher than that of the SEM after the peak

load.

0 5 10 15
0

0.05

0.1

0.15

CMOD
c
 f

t
 / G

F
 

σ N
 / 

f t

Numerical Simulation (TPFM)
Numerical Simulation (SEM)
Experiment: CB63−a
Experiment: CB63−b
Experiment: CB63−c
Experiment: B63−b
Experiment: B63−c

D

CMOD

P

a0

(a)

0 5 10 15
0

0.05

0.1

0.15

CMOD
c
 f

t
 / G

F
 

σ N
 / 

f t

Numerical Simulation (TPFM)
Numerical Simulation (SEM)
Experiment: B150−b
Experiment: B150−c

D

CMOD

P

a0

(b)

50



0 5 10 15
0

0.05

0.1

0.15

CMOD
c
 f

t
 / G

F
 

σ N
 / 

f t

Numerical Simulation (TPFM)
Numerical Simulation (SEM)
Experiment: B250−a
Experiment: B250−b
Experiment: B250−c

D

CMOD

P

a0

(c)

Figure 5.3: Numerical predictions of load-CMOD curves compared with experimental data:
(a) specimen size, D=63mm, (b) specimen size D=150mm, (c) specimen size, D=250mm

The peak load, which is essential for the determination of fracture parameters, was com-

pared to that of the numerical simulation. Although the peak load was under-predicted for

the 63 mm and 250 mm beam depth, Table 5.4 shows that the error was less than 10%.

In addition to the peak load, the total fracture energy of the experiment was compared to

that of the numerical simulation calculated by the load-CMOD curve. The high level of

agreement between the experiment and the numerical simulation was obtained, because the

experimental total fracture energy was included in the determination of the cohesive law for

the numerical simulation.

Table 5.4: Comparison of the peak load and the total fracture energy between experimental
data and the numerical simulation
Specimen Peak load (Pc) Total fracture energy (GF )

size Experimental Numerical Error Experimental Numerical Error
(D) DATA result (kN) (%) DATA result (%)
(mm) (kN) TPFM SEM TPFM SEM (kN) TPFM SEM TPFM SEM
63 2.52 (2.05∼2.82) 2.34 2.3 6.99 9.68 119 (106∼124) 115 112 3.5 5.5
150 4.13 (4.09∼4.16) 4.39 4.29 3.98 2.49 164 (159∼170) 156 150 5.9 8.4
250 6.70 (6.31∼6.93) 6.23 6.05 2.73 3.32 167 (139∼193) 165 160 1.0 4.5
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5.2.2 Model Sensitivity

The sensitivity of the numerical prediction of the load-CMOD curve for the four experimental

fracture parameters (Gf , ft
′, GF and ψ) was investigated. These four fracture parameters

in the bi-linear softening curve are listed in Table 5.5. Figures 5.4, 5.5, 5.6 and 5.7 show the

results of predicted load-CMOD curves compared with experimental data.

Table 5.5: Fracture parameters in the bi-linear softening curve for the model sensitivity

Specimen size Initial fracture Tensile strength Total fracture Stress change
(D) (mm) energy (N/m) (MPa) energy (N/m) point (ψ)

Figure 5.4 150 56.6 / 62.3 4.15 164 0.34

Figure 5.5 150 56.6 4.15 / 5.83 164 0.34

Figure 5.6 63 56.6 4.15 119 / 167 0.34

Figure 5.7 150 56.6 4.15 164 0.34 / 0.15

Sensitivity with Respect to Initial Fracture Energy (Gf)

Larger initial fracture energies produced greater peak loads at failure for a given ft
′, GF and

ψ, as shown in Figure 5.4. After the peak load, the two softening curves intersected because

both total fracture energies were identical in the bi-linear softening.

Sensitivity with Respect to Tensile Strength (ft
′)

The numerical prediction of the measured tensile strength (4.15 MPa) was compared with an

additional simulation where the tensile strength (5.83 MPa) was assumed to be 10% of the

measured compressive strength. Since the tensile strength was assumed to be the fracture

initiation criterion, the peak load was greatly affected by changes in the cohesive strength

(ft
′), as shown in Figure 5.5. With greater tensile strength materials for a fixed Gf , GF , and

ψ, the slope of the load-CMOD curve becomes steeper, which corresponds to more brittle

behavior.
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Figure 5.4: Sensitivity of the initial fracture energy to predicted load-CMOD curves
(D=150mm).
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Figure 5.5: Sensitivity of the tensile strength to predicted load-CMOD curves (D=150mm).
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Sensitivity with Respect to the Total Fracture Energy (GF )

The total fracture energy of a 63 mm beam (119 N/m) and that of a 250 mm beam (167

N/m) were compared in order to predict the 63 mm specimen behavior shown in Figure 5.6.

As the total fracture energy increased for a fixed Gf , ft
′ and ψ, only the post-peak behavior

of the specimen was influenced, but not the structure’s nominal strength.
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Figure 5.6: Sensitivity of the total fracture energy to predicted load-CMOD curves
(D=63mm).

Sensitivity with Respect to the stress ratio of the Kink Point (ψ)

The sensitivity of ψ to the post-peak load behavior was examined through the different ratios

of the stress kink point (0.15 and 0.34), as shown in Figure 5.7. The magnitude of the kink

point stress does not affect the peak load but as the kink stress ratio increases from 0.15 to

0.34, the tail of the softening curve is extended.
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Figure 5.7: Sensitivity of the ratio of the stress at the kink point to predicted load-CMOD
curves (D=63mm).

Summary

The initial fracture energy (Gf ) and the tensile strength (ft
′) are essential parameters to

determine the strength of specimens, while the stress ratio of the kink point (ψ) and the

total fracture energy (GF ) influence the post-peak behavior as shown in Figure 5.8.
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Figure 5.8: Sensitivity of the numerical prediction of a load-CMOD curve for the four fracture
parameters (Gf , ft

′, GF and ψ)
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5.3 Size Effect in the CZM

The size effect is the change of a structural property, for instance, the nominal strength,

the maximum deflection or the maximum strain, while the size of a structure changes. The

influence of the structural size (D) on the nominal strength (σNu) was examined by the

experiment and by numerical simulation. The nominal strength of the experimental and

numerical results were assumed to be calculated as the peak load divided by the beam width

and thickness. Both experimental and numerical nominal strength are plotted in Figure

5.9 with the size effect equation by Bazant (2.24), which defines the relationship between

size and nominal strength. The size effect curve calculated from the SEM parameters closely

resembles the curve obtained from the TPFM parameters as seen in Figure 5.9. In conclusion,

the nominal strength of both size effect models [4, 26] is similar to that of the experiment

and the numerical simulation.
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Figure 5.9: Size effect
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Chapter 6

Conclusions and Future Studies

This study investigates concrete mode I fracture behavior, with special emphasis on the

size effect on the nominal strength of structures. This chapter offers a brief summary and

outlines the major contributions of the present work. Then, suggestions for future work to

extend this study follow.

6.1 Summary

The size effect is apprehended by two major explanations of non-linear fracture mechanics:

the equivalent elastic crack model and the cohesive zone model. The equivalent elastic

crack model is the foundation not only of the SEM, proposed by Bazant [4]; but also of the

TPFM, proposed by Jenq and Shah [26]. Both the SEM and the TPFM are equivalent for

the consideration of the size effect, and provide two size independent fracture parameters.

The cohesive zone model employs the bi-linear softening to characterize the non-linear

fracture process behavior of concrete. The determination of the bi-linear softening curve is

based directly on four experimental fracture parameters (Gf , ft
′, GF and ψ) without any

further calibration or artifact. The initial fracture energy, the tensile strength and the stress

ratio at the kink point are the size independent fracture parameters in our model while the

total fracture energy depends on specimen size.

The CZM of the bi-linear softening curve for concrete is implemented into a user-defined
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subroutine in a commercial finite element software (UEL in ABAQUS) in order to predict

load-CMOD curves and to describe the size effect. Initial fracture energy and tensile strength

are the essential parameters in the calculation of the peak load of the specimen in the CZM,

whereas total fracture energy and the stress ratio at the kink point are sensitive to post-peak

load behavior. Moreover, the numerical simulation of the CZM allows representation of the

size effect on the nominal strength, which agrees not only with experimental results, but

with the size effect equation whose constants are determined by the TPFM and the SEM.

The primary contributions of this study are briefly summarized as follows:

• Experimental load-CMOD curves can be predicted by the bi-linear softening CZM

without any artifact or further calibration of the model’s fracture parameters.

• The kink point in the bi-linear softening is systematically determined by the experi-

mental fracture parameters (CTODc, ft
′ and Gf ) rather than being defined in an ad

hoc manner.

• The size effect of the nominal strength for concrete is consistently examined in three

different ways: the results of three-point bending tests, the size effect equation proposed

by Bazant, and the CZM with bi-linear softening.

6.2 Suggestions for Future Studies

The present study of concrete fracture provides insight for in-depth studies about fiber re-

inforced concrete, mixed mode problems and other numerical implementation models. Each

of those aspects is briefly discussed below.

Fiber Reinforced Concrete

The CZM can also be applicable to fiber reinforced concrete by including a fiber bridging

potential in the cohesive law. Furthermore, if the fiber bridge potential is determined by
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a fiber volume fraction, a layered concrete with different fiber volume fractions could be

simulated by the CZM. For further relevant information on fiber reinforced concrete, the

reader is referred to the book by Bentur [11] and Van Mier [34].

Mixed Mode

Although this study of the CZM considers only Mode I fracture behavior, the CZM could

be extended to a mixed mode fracture problem. The mixed mode can be represented by

introducing effective quantities, for instance, effective opening displacements or effective

cohesive tractions [32]. An alternative approach consists of determining separate CZMs

corresponding to each independent fracture mode.

Size Effect in the Virtual Internal Bond Model

The virtual internal bond (VIB) model, as proposed by Gao and Klein [18, 27], incorporates

the cohesive law into the continuum constitutive law within the framework of hyperelasticity

in continuum mechanics. This model could also be exploited for numerical simulations

to illustrate the size effect of concrete, especially fiber reinforced concrete. Alternative

approaches to the existing ones in the technical literature include modified potential and

multi-potentials.
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Appendix A

ABAQUS UEL subroutine for CZM

c

c ==============================================================================

c ABAQUS user element (UEL) subroutine

c The UEL is implemented for the two-dimensional cohesive element for mode I.

c The cohesive element has four nodes and two d.o.f. at each node.

c The element numbering is counter-clockwise as shown below.

c 4 +------+ 3

c 1 +------+ 2

c ==============================================================================

SUBROUTINE UEL (RHS, AMATRX, SVARS, ENERGY, NDOFEL, NRHS, NSVARS,

& PROPS, NPROPS, COORDS, MCRD, NNODE, U, DU, V, A, JTYPE, TIME,

& DTIME, KSTEP, KINC, JELEM, PARAMS, NDLOAD, JDLTYP, ADLMAG,

& PREDEF, NPREDF, LFLAGS, MLVARX, DDLMAG, MDLOAD, PNEWDT, JPROPS,

& NJPRO, PERIOD)

c

INCLUDE ’ABA_PARAM.INC’

c

DIMENSION RHS(MLVARX,*), AMATRX(NDOFEL,NDOFEL), PROPS(*),

& SVARS(*), ENERGY(8), COORDS(MCRD, NNODE), U(NDOFEL),

& DU(MLVARX,*), V(NDOFEL), A(NDOFEL), TIME(2), PARAMS(*),

& JDLTYP(MDLOAD,*), ADLMAG(MDLOAD,*), DDLMAG(MDLOAD,*),

& PREDEF(2, NPREDF, NNODE), LFLAGS(*), JPROPS(*)

c

DIMENSION T(mcrd,nrhs),T_d(mcrd,mcrd),w(mcrd),P_l(ndofel,nrhs),

& P_g(ndofel,nrhs),S_l(ndofel,ndofel),S_g(ndofel,ndofel),

& R(ndofel,ndofel),R_t(ndofel,ndofel),Shape_N(mcrd,ndofel),

& Shape_Nt(ndofel,mcrd),coord_l(mcrd,nnode),GP(2),GP_w(2),

& coords_m(2,mcrd), u1(mcrd), u2(mcrd),

& store_1(ndofel,mcrd), store_2(ndofel,ndofel)

c ==============================================================================

c Variables to be defined in the UEL subroutine

c RHS : Right-Hand-Side vector

c AMATRX : Stiffness (Jacobian) matrix
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c Variables available in the UEL subroutine

c U : Displacement

c COORDS : Original coordinates of the node

c MCRD : Largest active degree of freedom (Coordinates parameter)

c NNODE : Number of nodes

c Constants from the ABAQUS input for the cohesive zone modeling : PROPS(*)

c G_f : Total Fracture Energy

c G_f1 : Initial fracture energy

c f_t : Tensile strength of concrete

c psi : Stress at the slop change

c w_cr : Critical crack opening width

c th : Thickness of the element for 2D

c Variables during calculation

c T : Cohesive force law (Softening curve) matrix

c T_d : Derivative of the cohesive law matrix

c w : Crack opening width vector

c P_l : Load vector in local coordinate

c P_g : Load vector in global coordinate

c S_l : Stiffness matrix in local coordinate

c S_g : Stiffness matrix in global coordinate

c R : Coordinate transformation matrix

c coord_l : Deformed configuration in local coordinate system

c Shape_N : Shape function Matrix

c Constants during calculation

c w_f : Final crack opening width

c w_1 : Intercept of crack opening axis and initial decreasing slop

c n_GP : Number of Gauss Point

c GP : Gauss points

c GP_W : Weight at the Gauss points

c External Functions

c x1, x2 : Shape functions

c External Subroutines

c K_COHESIVE_LAW : Calculate T & T_d

c K_LOCAL_COORDINATE : Calculate R & coord_l

c K_MATRIX_ZERO : Matrix operation (A = 0)

c K_MATRIX_TRANSPOSE : Matrix operation (B = A_t)

c K_MATRIX_PLUS_SCALAR : Matrix operation (A = A + c * B)

c K_MATRIX_MULTIPLY : Matrix operation (C = A * B)

c ==============================================================================

c Input DATA -------------------------------------------------------------------

G_f = props (1)

G_f1 = props (2)

f_t = props (3)

psi = props (4)

w_cr = props (5)

th = props(6)

n_GP = 2
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data GP / 0.5773502691896 , -0.5773502691896 /

data GP_W / 1.0 , 1.0 /

c Initialize -------------------------------------------------------------------

call k_matrix_zero (rhs,ndofel,nrhs)

call k_matrix_zero (amatrx,ndofel,ndofel)

call k_matrix_zero (T,mcrd,nrhs)

call k_matrix_zero (T_d,mcrd,mcrd)

call k_matrix_zero (R,ndofel,ndofel)

call k_matrix_zero (Shape_N,mcrd,ndofel)

c Determine the softening curve ------------------------------------------------

w_1 = 2*G_f1/f_t

w_f = 2/(psi*f_t)*(G_f-G_f1+psi*G_f1)

w_cr = w_cr * w_f

c Change global coordinate into local coordinate -------------------------------

call k_local_coordinate (R,coords,coord_l,U,ndofel,nnode,mcrd)

call k_matrix_transpose (R, R_t, ndofel, ndofel)

c Element length : el_length ---------------------------------------------------

do i = 1, mcrd

coords_m(i,1) = (coord_l(i,1)+coord_l(i,4))*0.5d0

coords_m(i,2) = (coord_l(i,2)+coord_l(i,3))*0.5d0

end do

el_x = coords_m(1,2) - coords_m(1,1)

el_y = coords_m(2,2) - coords_m(2,1)

el_length = (el_x**2 + el_y**2)**0.5

c Opeing displacement at the left and right hand side node : u1, u2 ------------

do i = 1, mcrd

u1(i) = coord_l(i,4) - coord_l(i,1)

u2(i) = coord_l(i,3) - coord_l(i,2)

end do

c Numerical Integration at the Gauss points ------------------------------------

do i = 1, n_GP

c Crack opening width in tangental and normal direction : w

do j = 1, mcrd

w(j) = x1(GP(i))*u1(j) + x2(GP(i))*u2(j)

end do

c Shape function matrix

do j = i, mcrd

Shape_N(j,j) = x1(GP(i))

Shape_N(j,j+2) = x2(GP(i))

Shape_N(j,j+4) = -x2(GP(i))

Shape_N(j,j+6) = -x1(GP(i))

end do

call k_matrix_transpose (Shape_N,Shape_Nt,mcrd,ndofel)

c Stiffness matrix & Load vector in local coordinate ---------------------------

call k_Cohesive_Law (T,T_d,f_t,psi,w_1,w_f,w_cr,w,mcrd,nrhs)

call k_matrix_multiply (Shape_Nt,T_d,store_1,ndofel,mcrd,mcrd)

call k_matrix_multiply (store_1,Shape_N,S_l,ndofel,mcrd,ndofel)
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call k_matrix_multiply (Shape_Nt,T,P_l,ndofel,mcrd,nrhs)

c Stiffness matrix & Load vector in global coordinate --------------------------

call k_matrix_multiply (R_t,S_l,store_2,ndofel,ndofel,ndofel)

call k_matrix_multiply (store_2,R,S_g,ndofel,ndofel,ndofel)

call k_matrix_multiply (R_t,P_l,P_g,ndofel,ndofel,nrhs)

c Multiply element length, weight and thickness --------------------------------

beta = 0.5 * el_length * GP_w(i) *th

call k_matrix_plus_scalar (amatrx,S_g,beta,ndofel,ndofel)

call k_matrix_plus_scalar (rhs,P_g,beta,ndofel,nrhs)

end do

return

end

c===============================================================================

c = Shape Functions ============================================================

function x1(xi)

INCLUDE ’ABA_PARAM.INC’

x1 = 0.5*(1 - xi)

end

function x2(xi)

INCLUDE ’ABA_PARAM.INC’

x2 = 0.5*(1 + xi)

end

c = Tranction and Jacobian Matrix ==============================================

subroutine K_COHESIVE_LAW (T,T_d,f_t,psi,w_1,w_f,w_cr,w,mcrd,

& nrhs)

INCLUDE ’ABA_PARAM.INC’

dimension T(mcrd,nrhs), T_d(mcrd,mcrd), w(mcrd)

w_x = w_1-psi*(w_1-w_cr)

T(1,1) = f_t/w_cr*w(1)

T_d(1,1) = f_t/w_cr

if (w(2) .LE. w_cr) then

T(2,1) = f_t/w_cr*w(2)

T_d(2,2) = f_t/w_cr

elseif ((w(2) .GT. w_cr) .and. (w(2) .LE. w_x)) then

T(2,1) = (w_1-w(2))*f_t/(w_1-w_cr)

T_d(2,2) = -f_t/(w_1-w_cr)

elseif ((w(2) .GT. w_x) .and. (w(2) .LE. w_f)) then

T(2,1) = (w_f-w(2))*f_t*psi/(w_f-w_x)

T_d(2,2) = -f_t*psi/(w_f-w_x)

elseif (w(2) .GT. w_f) then

call k_matrix_zero (T,mcrd,nrhs)

call k_matrix_zero (T_d,mcrd,mcrd)

end if

return

end

c = Coordinate translation =====================================================

subroutine K_LOCAL_COORDINATE (R,coords,coord_l,U,ndofel,nnode,
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& mcrd)

INCLUDE ’ABA_PARAM.INC’

dimension R(ndofel,ndofel),coords(mcrd,nnode),coord_l(mcrd,nnode)

& , U(ndofel)

dimension co_de(mcrd,nnode), co_de_m(2,2)

c Deformed configuration coordinate --------------------------------------------

do i = 1, mcrd

do j = 1, nnode

co_de(i,j) = coords(i,j) + u(2*(j-1)+i)

end do

end do

c Mid point at the deformed configuration --------------------------------------

do i = 1, 2

co_de_m(i,1) = (co_de(i,1)+co_de(i,4))*0.5

co_de_m(i,2) = (co_de(i,2)+co_de(i,3))*0.5

end do

c Caculate the direction cosine ------------------------------------------------

d_x = co_de_m(1,2) - co_de_m(1,1)

d_y = co_de_m(2,2) - co_de_m(2,1)

d_l = (d_x**2 + d_y**2)**0.5

cos_a = d_x / d_l

sin_a = d_y / d_l

c Tanslation(Rotational) Matrix ------------------------------------------------

do i = 1, nnode

R(2*i-1,2*i-1) = cos_a

R(2*i-1,2*i) = sin_a

R(2*i,2*i-1) = -sin_a

R(2*i,2*i) = cos_a

end do

c Change global defomation into local deformation ------------------------------

do i = 1, nnode

coord_l(1,i) = R(1,1)*co_de(1,i) + R(1,2)*co_de(2,i)

coord_l(2,i) = R(2,1)*co_de(1,i) + R(2,2)*co_de(2,i)

end do

return

end

c = Matrix operation ===========================================================

subroutine K_MATRIX_ZERO (A,n,m)

INCLUDE ’ABA_PARAM.INC’

dimension A(n,m)

do i = 1, n

do j = 1, m

A(i,j) = 0.d0

end do

end do

return

end
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subroutine K_MATRIX_TRANSPOSE (A,B,n,m)

INCLUDE ’ABA_PARAM.INC’

dimension A(n,m), B(m,n)

call k_Matrix_zero (B,m,n)

do i = 1, n

do j = 1, m

B(j,i) = A(i,j)

end do

end do

return

end

subroutine K_MATRIX_PLUS_SCALAR (A,B,c,n,m)

INCLUDE ’ABA_PARAM.INC’

dimension A(n,m), B(n,m)

do i = 1, n

do j = 1, m

A(i,j) = A(i,j) + c*B(i,j)

end do

end do

return

end

subroutine K_MATRIX_MULTIPLY (A,B,C,l,n,m)

INCLUDE ’ABA_PARAM.INC’

dimension A(l,n), B(n,m), C(l,m)

call k_Matrix_zero (C,l,m)

do i = 1, l

do j = 1, m

do k = 1, n

C(i,j) = C(i,j) + A(i,k) * B (k,j)

end do

end do

end do

return

end

c ==============================================================================
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